60,189 research outputs found

    Functional and molecular mmune response of rainbow trout (Oncorhynchus mykiss) following challenge with Yersinia ruckeri

    Get PDF
    Currently, aquaculture production of rainbow trout (Oncorhynchus mykiss) is a multibillion dollar industry; nevertheless, the development of this sector has not been exempt from pitfalls related to the recurrent presence of pathogens of bacterial origin. This is the case of Yersinia ruckeri, the etiologic agent of the infectious pathology known as Enteric Red Mouth Disease (ERM), causing serious economic losses that can be as high as 30–70% of production. Although several studies have been performed regarding pathogen features and virulence factors, more information is needed about the host defense mechanism activation after infection. Given this perspective, this study aimed to evaluate rainbow trout’s short-term innate immune response against infection with Y. ruckeri. A series of factors linked to the innate immune response were evaluated, including determination of hematological parameters, oxidative stress biomarkers, and analysis of the expression of immunerelated genes. Results showed a significant decrease in several hematological parameters (white blood cell count, hematocrit, neutrophils, monocytes, lymphocytes, and thrombocytes) and oxidative stress indicators (SOD) between the control and infected groups. In addition, there were significant differences in the level of gene expression between infected individuals and the control group. Most of these genes (il-1b, il-8, il-10, tnf-a1, tnf-a2, socs3, mmp-9, cath, hsp-70, saa, fer, pcb) were upregulated within the first 24 h following infection. Results from this study showed more insights into the short-term immune response of rainbow trout to infection with Y. ruckeri, which may be useful for the establishment of biomarkers that may be used for the early detection of ERM.info:eu-repo/semantics/publishedVersio

    Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines

    Full text link
    We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The quark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number
    • …
    corecore