15,726 research outputs found

    Disruption management in passenger railway transportation.

    Get PDF
    This paper deals with disruption management in passengerrailway transportation. In the disruption management process, manyactors belonging to different organizations play a role. In this paperwe therefore describe the process itself and the roles of thedifferent actors.Furthermore, we discuss the three main subproblems in railwaydisruption management: timetable adjustment, and rolling stock andcrew re-scheduling. Next to a general description of these problems,we give an overview of the existing literature and we present somedetails of the specific situations at DSB S-tog and NS. These arethe railway operators in the suburban area of Copenhagen, Denmark,and on the main railway lines in the Netherlands, respectively.Since not much research has been carried out yet on OperationsResearch models for disruption management in the railway context,models and techniques that have been developed for related problemsin the airline world are discussed as well.Finally, we address the integration of the re-scheduling processesof the timetable, and the resources rolling stock and crew.

    The new Dutch timetable: The OR revolution

    Get PDF
    In December 2006, Netherlands Railways introduced a completely new timetable. Its objective was to facilitate the growth of passenger and freight transport on a highly utilized railway network, and improve the robustness of the timetable resulting in less train delays in the operation. Further adjusting the existing timetable constructed in 1970 was not option anymore, because further growth would then require significant investments in the rail infrastructure. Constructing a railway timetable from scratch for about 5,500 daily trains was a complex problem. To support this process, we generated several timetables using sophisticated operations research techniques, and finally selected and implemented one of these timetables. Furthermore, because rolling-stock and crew costs are principal components of the cost of a passenger railway operator, we used innovative operations research tools to devise efficient schedules for these two resources. The new resource schedules and the increased number of passengers resulted in an additional annual profit of 40 million euros (60million)ofwhichabout10millioneuroswerecreatedbyadditionalrevenues.Weexpectthistoincreaseto70millioneuros(60 million) of which about 10 million euros were created by additional revenues. We expect this to increase to 70 million euros (105 million) annually in the coming years. However, the benefits of the new timetable for the Dutch society as a whole are much greater: more trains are transporting more passengers on the same railway infrastructure, and these trains are arriving and departing on schedule more than they ever have in the past. In addition, the rail transport system will be able to handle future transportation demand growth and thus allow cities to remain accessible. Therefore, people can switch from car transport to rail transport, which will reduce the emission of greenhouse gases.

    How do principles for human-centred automation apply to Disruption Management Decision Support?

    Get PDF
    While automation of signal and route setting is routine, the use of automation or decision support in disruption management processes is far less common. Such support offers significant advantages in optimising re-planning of both timetable and resources (crew and rolling stock), and has value in offering a 'shared view' of re-planning across the many actors manage disruption. If this vision is to be realised, however, disruption management decision support and automation must adhere to proven principles for effective human-agent cooperation. This paper synthesises data from a programme of work to understand user requirements for automated disruption support tools. It then compares these outputs with two frameworks for human-centred automation - one general (Klein et al's [2004] ten challenges for automation) and one transport specific (Balfe et al’s [2012] principles for transport automation). Emergent design requirements include the need for iterative modification of rescheduling parameters throughout a disruption, visibility of the reasoning behind options, accountability remaining in the hands of disruption controllers, and the need for the automated disruption support tools to take a multi-dimensional view of disruption that varies depending on the event encountered. The paper reflects on the practical utility of high-level design principles for automated disruption support tools

    How do principles for human-centred automation apply to Disruption Management Decision Support?

    Get PDF
    While automation of signal and route setting is routine, the use of automation or decision support in disruption management processes is far less common. Such support offers significant advantages in optimising re-planning of both timetable and resources (crew and rolling stock), and has value in offering a 'shared view' of re-planning across the many actors manage disruption. If this vision is to be realised, however, disruption management decision support and automation must adhere to proven principles for effective human-agent cooperation. This paper synthesises data from a programme of work to understand user requirements for automated disruption support tools. It then compares these outputs with two frameworks for human-centred automation - one general (Klein et al's [2004] ten challenges for automation) and one transport specific (Balfe et al’s [2012] principles for transport automation). Emergent design requirements include the need for iterative modification of rescheduling parameters throughout a disruption, visibility of the reasoning behind options, accountability remaining in the hands of disruption controllers, and the need for the automated disruption support tools to take a multi-dimensional view of disruption that varies depending on the event encountered. The paper reflects on the practical utility of high-level design principles for automated disruption support tools

    Train-scheduling optimization model for railway networks with multiplatform stations

    Get PDF
    This paper focuses on optimizing the schedule of trains on railway networks composed of busy complex stations. A mathematical formulation of this problem is provided as a Mixed Integer Linear Program (MILP). However, the creation of an optimal new timetable is an NP-hard problem; therefore, the MILP can be solved for easy cases, computation time being impractical for more complex examples. In these cases, a heuristic approach is provided that makes use of genetic algorithms to find a good solution jointly with heuristic techniques to generate an initial population. The algorithm was applied to a number of problem instances producing feasible, though not optimal, solutions in several seconds on a laptop, and compared to other proposals. Some improvements are suggested to obtain better results and further improve computation time. Rail transport is recognized as a sustainable and energy-efficient means of transport. Moreover, each freight train can take a large number of trucks off the roads, making them safer. Studies in this field can help to make railways more attractive to travelers by reducing operative cost, and increasing the number of services and their punctuality. To improve the transit system and service, it is necessary to build optimal train scheduling. There is an interest from the industry in automating the scheduling process. Fast computerized train scheduling, moreover, can be used to explore the effects of alternative draft timetables, operating policies, station layouts, and random delays or failures.Postprint (published version

    Disruption Management in Passenger Railway Transportation

    Get PDF
    This paper deals with disruption management in passenger railway transportation. In the disruption management process, many actors belonging to different organizations play a role. In this paper we therefore describe the process itself and the roles of the different actors. Furthermore, we discuss the three main subproblems in railway disruption management: timetable adjustment, and rolling stock and crew re-scheduling. Next to a general description of these problems, we give an overview of the existing literature and we present some details of the specific situations at DSB S-tog and NS. These are the railway operators in the suburban area of Copenhagen, Denmark, and on the main railway lines in the Netherlands, respectively. Since not much research has been carried out yet on Operations Research models for disruption management in the railway context, models and techniques that have been developed for related problems in the airline world are discussed as well. Finally, we address the integration of the re-scheduling processes of the timetable, and the resources rolling stock and crew

    Decision Support for the Rolling Stock Dispatcher

    Get PDF

    Need and Opportunities for a ‘Plan B’ in Rail Track Inspection Schedules

    Get PDF
    AbstractTrack inspection is purposely performed to recover tracks from defects and damage and eliminate potential safety hazards. It is scheduled through an exhaustive process that usually integrates many disciplines such as optimization, statistics, risk management, etc. Spending so much of a monetary and an emotional investment in an original schedule (referred to as master schedule hereafter) that the scheduler wants to deliver might be a good excuse not to develop a solid ‘Plan B’. Plan B here refers to scheduler responses or a contingency plan when the master schedule does not go as expected. It is found that there is often low to moderate probability of a crisis occurring when a schedule is executed in a real environment. Nevertheless, its impact can leave transportation services to the mercy of the disruption as shown by the Christmas 2014 incident where a huge volume of passengers using King's Cross and Paddington services experienced both inconvenience and discomfort due to engineering delays and train disruption. Thus, this paper aims to discuss the potential of considering ‘Plan B’ or contingency plan if incidents arise that were not expected during track inspection schedule execution. Benefits, general guidelines and relevant strategies for creating a contingency plan are also discussed. We highlight the rationale to support the claim that an original schedule of track inspection jobs should be adapted to respond to a new context e.g. inspection vehicle machine breakdown, new inspection requests, man-made hazards, terrorist attack, extreme weather, climate change, etc. It is however proposed to develop an appropriate set of performance measure that is used to guide rescheduling in track inspection due to financial, equipment inventory, manpower, safety regulations, time and spatial constraints

    How do principles for human-centred automation apply to Disruption Management Decision Support?

    Get PDF
    While automation of signal and route setting is routine, the use of automation or decision support in disruption management processes is far less common. Such support offers significant advantages in optimising re-planning of both timetable and resources (crew and rolling stock), and has value in offering a 'shared view' of re-planning across the many actors manage disruption. If this vision is to be realised, however, disruption management decision support and automation must adhere to proven principles for effective human-agent cooperation. This paper synthesises data from a programme of work to understand user requirements for automated disruption support tools. It then compares these outputs with two frameworks for human-centred automation - one general (Klein et al's [2004] ten challenges for automation) and one transport specific (Balfe et al’s [2012] principles for transport automation). Emergent design requirements include the need for iterative modification of rescheduling parameters throughout a disruption, visibility of the reasoning behind options, accountability remaining in the hands of disruption controllers, and the need for the automated disruption support tools to take a multi-dimensional view of disruption that varies depending on the event encountered. The paper reflects on the practical utility of high-level design principles for automated disruption support tools
    corecore