148 research outputs found

    Automatic Target Recognition Strategy for Synthetic Aperture Radar Images Based on Combined Discrimination Trees

    Get PDF
    A strategy is introduced for achieving high accuracy in synthetic aperture radar (SAR) automatic target recognition (ATR) tasks. Initially, a novel pose rectification process and an image normalization process are sequentially introduced to produce images with less variations prior to the feature processing stage. Then, feature sets that have a wealth of texture and edge information are extracted with the utilization of wavelet coefficients, where more effective and compact feature sets are acquired by reducing the redundancy and dimensionality of the extracted feature set. Finally, a group of discrimination trees are learned and combined into a final classifier in the framework of Real-AdaBoost. The proposed method is evaluated with the public release database for moving and stationary target acquisition and recognition (MSTAR). Several comparative studies are conducted to evaluate the effectiveness of the proposed algorithm. Experimental results show the distinctive superiority of the proposed method under both standard operating conditions (SOCs) and extended operating conditions (EOCs). Moreover, our additional tests suggest that good recognition accuracy can be achieved even with limited number of training images as long as these are captured with appropriately incremental sample step in target poses

    Robust real-time tracking in smart camera networks

    Get PDF

    Visual tracking with spatio-temporal Dempster-Shafer information fusion

    Get PDF
    A key problem in visual tracking is how to effectively combine spatio-temporal visual information from throughout a video to accurately estimate the state of an object. We address this problem by incorporating Dempster-Shafer information fusion into the tracking approach. To implement this fusion task, the entire image sequence is partitioned into spatially and temporally adjacent subsequences. A support vector machine (SVM) classifier is trained for object=non-object classification on each of these subsequences, the outputs of which act as separate data sources. To combine the discriminative information from these classifiers, we further present a spatio-temporal weighted Dempster-Shafer (STWDS) scheme. Moreover, temporally adjacent sources are likely to share discriminative information on object/non-object classification. In order to use such information, an adaptive SVM learning scheme is designed to transfer discriminative information across sources. Finally, the corresponding Dempster-Shafer belief function of the STWDS scheme is embedded into a Bayesian tracking model. Experimental results on challenging videos demonstrate the effectiveness and robustness of the proposed tracking approach.Xi Li, Anthony Dick, Chunhua Shen, Zhongfei Zhang, Anton van den Hengel, Hanzi Wan

    Doctor of Philosophy

    Get PDF
    dissertationScene labeling is the problem of assigning an object label to each pixel of a given image. It is the primary step towards image understanding and unifies object recognition and image segmentation in a single framework. A perfect scene labeling framework detects and densely labels every region and every object that exists in an image. This task is of substantial importance in a wide range of applications in computer vision. Contextual information plays an important role in scene labeling frameworks. A contextual model utilizes the relationships among the objects in a scene to facilitate object detection and image segmentation. Using contextual information in an effective way is one of the main questions that should be answered in any scene labeling framework. In this dissertation, we develop two scene labeling frameworks that rely heavily on contextual information to improve the performance over state-of-the-art methods. The first model, called the multiclass multiscale contextual model (MCMS), uses contextual information from multiple objects and at different scales for learning discriminative models in a supervised setting. The MCMS model incorporates crossobject and interobject information into one probabilistic framework, and thus is able to capture geometrical relationships and dependencies among multiple objects in addition to local information from each single object present in an image. The second model, called the contextual hierarchical model (CHM), learns contextual information in a hierarchy for scene labeling. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. The CHM then incorporates the resulting multiresolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. We demonstrate the performance of CHM on different challenging tasks such as outdoor scene labeling and edge detection in natural images and membrane detection in electron microscopy images. We also introduce two novel classification methods. WNS-AdaBoost speeds up the training of AdaBoost by providing a compact representation of a training set. Disjunctive normal random forest (DNRF) is an ensemble method that is able to learn complex decision boundaries and achieves low generalization error by optimizing a single objective function for each weak classifier in the ensemble. Finally, a segmentation framework is introduced that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy images

    Improved Behavior Monitoring and Classification Using Cues Parameters Extraction from Camera Array Images

    Get PDF
    Behavior monitoring and classification is a mechanism used to automatically identify or verify individual based on their human detection, tracking and behavior recognition from video sequences captured by a depth camera. In this paper, we designed a system that precisely classifies the nature of 3D body postures obtained by Kinect using an advanced recognizer. We proposed novel features that are suitable for depth data. These features are robust to noise, invariant to translation and scaling, and capable of monitoring fast human bodyparts movements. Lastly, advanced hidden Markov model is used to recognize different activities. In the extensive experiments, we have seen that our system consistently outperforms over three depth-based behavior datasets, i.e., IM-DailyDepthActivity, MSRDailyActivity3D and MSRAction3D in both posture classification and behavior recognition. Moreover, our system handles subject's body parts rotation, self-occlusion and body parts missing which significantly track complex activities and improve recognition rate. Due to easy accessible, low-cost and friendly deployment process of depth camera, the proposed system can be applied over various consumer-applications including patient-monitoring system, automatic video surveillance, smart homes/offices and 3D games
    corecore