2,428 research outputs found

    Radon Mitigation Approach in a Laboratory Measurement Room

    Get PDF
    [Abstract] Radon gas is the second leading cause of lung cancer, causing thousands of deaths annually. It can be a problem for people or animals in houses, workplaces, schools or any building. Therefore, its mitigation has become essential to avoid health problems and to prevent radon from interfering in radioactive measurements. This study describes the implementation of radon mitigation systems at a radioactivity laboratory in order to reduce interferences in the different works carried out. A large set of radon concentration samples is obtained from measurements at the laboratory. While several mitigation methods were taken into account, the final applied solution is explained in detail, obtaining thus very good results by reducing the radon concentration by 76%.Ministerio de EconomĂ­a y Competitividad; AYA2014-57648-PAsturias (Comunidad AutĂłnoma). ConsejerĂ­a de EconomĂ­a y Empleo; FC-15-GRUPIN14-01

    Radiation protection considerations on radon and building materials radioactivity in Near Zero Energy Buildings

    Get PDF
    Recent updates of the E.U. Basic Safety Standards, stated in the Council Directive 2013/59/EURATOM, are focusing on risks related to radon gas concentration inside dwellings and working places, as well as radioactivity of building materials. In particular, the new E.U. Basic Safety Standards are based on last recommendations from the International Commission on Radiological Protection (ICRP), and from the World Health Organization (WHO), which consider that radon issues, and external irradiation from building material, as topic aspects to population’s health. Further, ICRP Publication 126, by using bio-kinetics models for estimating the effects of radon intakes, has drastically reduced the reference level for radon concentration in dwellings and working places. Radon issues have recently gained particular attention due to current orientations in constructing buildings with energy consumptions lower and lower. Radon gas emerges from the ground, penetrates building’s basements, and accumulates itself into the indoor air, being breathed by people. Taking care of windows’ airtightness allows the radon concentration to build up, in some cases beyond reference levels, together with other chemical pollutants, i.e. combustion residues and solvents. On considering that Council Directive 2013/59 EURATOM has to be transposed into law by each EU Member State by February 2018, it is recommended that radon issues have to be considered during the design phase of the building construction, particularly for NZEB applications. Further, external irradiation from building materials, i.e. tuff, marbles, tiles, pozzolana, coal ashes and so on, may be a reason of concern also. This paper describes radiation protection issues focusing on public and domestic environments, where people are supposed to spend a considerable amount of time. About radon, real measurements are shown, both in domestic and working scenarios. Dealing with external irradiation due to building materials, calculations and simulations have been performed and results are presented

    Constraining Radon Backgrounds in LZ

    Get PDF
    The LZ dark matter detector, like many other rare-event searches, will suffer from backgrounds due to the radioactive decay of radon daughters. In order to achieve its science goals, the concentration of radon within the xenon should not exceed 2ÎĽ2\muBq/kg, or 20 mBq total within its 10 tonnes. The LZ collaboration is in the midst of a program to screen all significant components in contact with the xenon. The four institutions involved in this effort have begun sharing two cross-calibration sources to ensure consistent measurement results across multiple distinct devices. We present here five preliminary screening results, some mitigation strategies that will reduce the amount of radon produced by the most problematic components, and a summary of the current estimate of radon emanation throughout the detector. This best estimate totals <17.3<17.3 mBq, sufficiently low to meet the detector's science goals.Comment: Low Radioactivity Techniques (LRT) 2017 Workshop Proceedings. 6 pages; 3 figure

    An inexpensive and continuous radon progeny detector for indoor air-quality monitoring

    Get PDF
    A silicon photodiode-based inexpensive detector working as a counter and spectrometer for alpha particles has been conceived, designed, constructed and analyzed in depth. Monte Carlo simulations by means of MCNPX ver. 2.7.0 code have been carried out to select the most suitable sensitive element for the intended applications. The detecting unit has been coupled to an Arduino board and tested for low-rate alpha-particle counting and spectroscopy. Results demonstrate a maximum count rate of 4000 s-1, an energy resolution corresponding to a full width at half maximum of 160 keV over the entire energy range of measured alpha (namely 4 ÷ 6.5 MeV), and the sensitive element’s intrinsic efficiency of about 100%. Being the detector capable of distinguishing alpha energy associated to decays of radon daughters, its applications include 222Rn progeny monitoring. The air sampling system has been realized by a volumetric micro-pump forcing the air-flow through a millipore filter. By knowing the air-flow rate processed and the corresponding alpha energy spectrum measured, the concentrations of 218Po, 214Po and 210Po are determined. The potential alpha energy concentration-in-air is inferred, and effective dose evaluated. Calibration and testing measurements have been carried out by comparing the obtained results to the outputs of professional and expensive radon progeny monitor. The detector capability of “following” radon progeny concentration-in-air vs. time has been demonstrated. The device studied here can be configured as a prototype for an inexpensive radon progeny sensor to be potentially suitable for indoor air-monitoring in residential buildings, evaluating people’s exposures to radon and initiating corrective actions (e.g., mechanical ventilation) if necessary

    Testing the Properties of Radon Barrier Materials and Home Ventilation to Mitigate Indoor Radon

    Get PDF
    Indoor radon is the second cause of lung cancer. Mitigation strategies are based on (i) building protection with radon barrier materials, (ii) increasing home ventilation or (iii) room pressurization. A scale model room created with a porous ignimbrite rich in radon precursors was used as an analogue to test the indoor radon reduction ability of various radon barrier materials in a real room. The properties of these materials were tested with and without room pressurization by introducing outdoor air at different flow rates. The best materials reduced indoor radon up to 80% and, when the highest pressurization was applied, to 93%

    A cost-effective IoT system for monitoring Indoor radon gas concentration

    Get PDF
    [Abstract] Radon is a noble gas originating from the radioactive decay chain of uranium or thorium. Most radon emanates naturally from the soil and from some building materials, so it can be found in many places around the world, in particular in regions with soils containing granite or slate. It is almost impossible for a person to detect radon gas without proper tools, since it is invisible, odorless, tasteless and colorless. The problem is that a correlation has been established between the presence of high radon gas concentrations and the incidence of lung cancer. In fact, the World Health Organization (WHO) has stated that the exposure to radon is the second most common cause of lung cancer after smoking, and it is the primary cause of lung cancer among people who have never smoked. Although there are commercial radon detectors, most of them are either expensive or provide very limited monitoring capabilities. To tackle such an issue, this article presents a cost-effective IoT radon gas remote monitoring system able to obtain accurate concentration measurements. It can also trigger events to prevent dangerous situations and to warn users about them. Moreover, the proposed solution can activate mitigation devices (e.g., forced ventilation) to decrease radon gas concentration. In order to show its performance, the system was evaluated in three different scenarios corresponding to representative buildings in Galicia (Spain), a region where high radon gas concentrations are common due to the composition of the soil. In addition, the influence of using external hardware (i.e., WiFi transceivers and an embedded System-on-Chip (SoC)) next to the radon gas sensor is studied, concluding that, in the tested scenarios, they do not interfere with the measurements.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED341D R2016/012Xunta de Galicia; ED431G/01Agencia Estatal de Investigación de España; TEC2015-69648-REDCAgencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    Supporting Capabilities For Underground Facilities

    Full text link
    The 2021 particle physics community study, known as "Snowmass 2021", has brought together particle physicists around the world to create a unified vision for the field over the next decade. One of the areas of focus is the Underground Facilities (UF) frontier, which addresses underground infrastructure and the scientific programs and goals of underground-based experiments. To this effect, the UF Supporting Capabilities topical group created two surveys for the community to identify potential gaps between the supporting capabilities of facilities and those needed by current and future experiments. Capabilities surveyed are discussed in this report and include underground cleanroom space size and specifications, radon-reduced space needs and availability, the assay need and other underground space needs as well timeline for future experiments. Results indicate that future, larger experiments will increasingly require underground assembly in larger, cleaner cleanrooms, often with better radon-reduction systems and increased monitoring capability for ambient contaminants. Most assay needs may be met by existing worldwide capabilities with organized cooperation between facilities and experiments. Improved assay sensitivity is needed for assays of bulk and surface radioactivity for some materials for some experiments, and would be highly beneficial for radon emanation
    • …
    corecore