190 research outputs found

    Target classification in multimodal video

    Get PDF
    The presented thesis focuses on enhancing scene segmentation and target recognition methodologies via the mobilisation of contextual information. The algorithms developed to achieve this goal utilise multi-modal sensor information collected across varying scenarios, from controlled indoor sequences to challenging rural locations. Sensors are chiefly colour band and long wave infrared (LWIR), enabling persistent surveillance capabilities across all environments. In the drive to develop effectual algorithms towards the outlined goals, key obstacles are identified and examined: the recovery of background scene structure from foreground object ’clutter’, employing contextual foreground knowledge to circumvent training a classifier when labeled data is not readily available, creating a labeled LWIR dataset to train a convolutional neural network (CNN) based object classifier and the viability of spatial context to address long range target classification when big data solutions are not enough. For an environment displaying frequent foreground clutter, such as a busy train station, we propose an algorithm exploiting foreground object presence to segment underlying scene structure that is not often visible. If such a location is outdoors and surveyed by an infra-red (IR) and visible band camera set-up, scene context and contextual knowledge transfer allows reasonable class predictions for thermal signatures within the scene to be determined. Furthermore, a labeled LWIR image corpus is created to train an infrared object classifier, using a CNN approach. The trained network demonstrates effective classification accuracy of 95% over 6 object classes. However, performance is not sustainable for IR targets acquired at long range due to low signal quality and classification accuracy drops. This is addressed by mobilising spatial context to affect network class scores, restoring robust classification capability

    Future Transportation

    Get PDF
    Greenhouse gas (GHG) emissions associated with transportation activities account for approximately 20 percent of all carbon dioxide (co2) emissions globally, making the transportation sector a major contributor to the current global warming. This book focuses on the latest advances in technologies aiming at the sustainable future transportation of people and goods. A reduction in burning fossil fuel and technological transitions are the main approaches toward sustainable future transportation. Particular attention is given to automobile technological transitions, bike sharing systems, supply chain digitalization, and transport performance monitoring and optimization, among others

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    OPTIMIZATION OF TERMINAL LAYOUTS: AN ANALYTICAL AND SIMULATIVE APPROACH BASED ON GENETIC ALGORITHMS

    Get PDF
    2012/2013Every day millions of pedestrian move with different needs and objectives through spaces each of them with its functional specifications. An accurate design or revisiting of transport terminals, as for example railway stations, underway stations, airports, as well as complex buildings, open spaces and a deep analysis of public events with relevant pedestrian flows, would improve its usability at users benefit. To reach this goal is necessary a careful integration among architecture, engineering needs and transport disciplines, that, starting from the study of users behavior and pedestrian dynamics, provides the fundamental elements to be considered during design stage to ensure a major level of service. In literature nothing much is known about the optimal dimension of pedestrian transportation terminals. The aim of this study is to develop a methodology to size the functional terminal layouts, by the integration of analytical and simulative models submitted to generic algorithms, taking into account the dynamics and flows generated inside the terminals. In order to obviate the lack of requisite data for models calibration, validation and verification, as well as testing the process developed, an algorithm for data acquisition has been elaborated. It has a dedicated graphic interface, which allows to reveal the pedestrian dynamics and consequently to generate database; with these data is possible to obtain statistical and behavioral indicators about pedestrians detected. The use of analytical models, both to define the sizing of facilities inside the terminals and to model the user behavior during their paths, allows to define an objective function able to represent the performances of the terminal functional layout. Defined the dimensional ranges of each functional element inside the layout according a specific Level of Service, performed a design of experiments methodology and applied genetic algorithms to minimize the objective function, it is possible to obtain a set of optimal solutions for the terminal configuration sizing, in coherence with flows and dynamics generated inside the terminals itself. A further simulative approach, based on the application of the social force algorithm, allows, through quantitative and qualitative parameters, to identify the best solution(s) inside the domain previously identified with genetic algorithm application. Starting from the motivation that inspired this work, analyzed the existing literature and the main methods for data acquisition, it will be introduced the algorithm for the automatic acquisition of data and pedestrian database generation. The application of this tool will be illustrated in order to manifest the potentiality of the instrument same. Subsequently introduced the tool developed for the definition of the characteristic elements sizing and the model chosen for the correct estimation of pedestrian travel times, it will be explored the structure of the objective function aimed to identify the right trade-off between infrastructure and pedestrian costs. Finally, the application of genetic algorithms, resulting in the identification of Pareto front, generates the domain of optimal solutions to sift through the simulation approach. The developed methodology reveals a flexible and simple instruments, but, at the same time, accurate in the resolution of the problems for which has been structured. The potential of the developed methodology is highlighted in the course of the work thanks to a case of study.Ogni giorno milioni di pedoni si muovono con esigenze ed obbiettivi diversi in contesti differenti, ognuno dei quali con le sue caratteristiche tecniche funzionali. Un’attenta progettazione o rivisitazione dei terminali di trasporto, quali stazioni ferroviarie, metropolitane, aeroporti, così come degli edifici complessi, degli spazi aperti ed una corretta disamina degli eventi pubblici con flussi pedonali rilevanti, consentirebbe di migliorarne la fruibilità a beneficio dell’utenza. Per raggiungere tale obiettivo risulta necessaria un’attenta integrazione tra esigenze architettoniche, ingegneristiche e le discipline trasportistiche, le quali, partendo dallo studio comportamentale degli utenti e dalle dinamiche pedonali, forniscano gli elementi fondamentali da tenersi in considerazione nella fase di progettazione per garantire un maggiore livello di servizio. Riscontrata in letteratura una carenza di approcci finalizzata alla determinazione del miglior layout funzionale dei terminali, attraverso l’integrazione di modelli analitici e simulativi sottoposti ad algoritmi genetici, è stata sviluppata una metodologia che, coerentemente con le dinamiche e i flussi che all’interno dei terminali stessi si generano, mirasse al dimensionamento ottimo dei terminali di trasporto pedonale. Per ovviare alla mancanza di dati necessari per i processi di calibrazione, validazione e verifica dei modelli così come per testare il metodo sviluppato è stato innanzitutto elaborato un algoritmo per l’acquisizione di dati, con interfaccia grafica dedicata, che consente di rilevare le dinamiche pedonali, generare database e conseguentemente ricavare dati statistici e comportamentali dei pedoni. L’utilizzo di modelli analitici, sia per l’identificazione dei range dimensionali degli elementi caratteristici presenti all’interno dei terminali che per la modellizzazione del comportamento degli utenti, permette di definire una funzione obbiettivo che rappresenti le performances dei layout funzionali dei terminali. Attraverso design of experiments calibrati sui range dimensionali dei singoli elementi funzionali presenti all’interno dei terminali e la successiva applicazione degli algoritmi genetici finalizzati alla minimizzazione della funzione obiettivo, è possibile definire un insieme di soluzioni ottime per il dimensionamento dei terminali, in coerenza con i flussi e le dinamiche che in esso si generano. Un’ulteriore approccio simulativo, basato sull’applicazione dell’algoritmo delle forze sociali, consente, attraverso la valutazione di parametri quantitativi e qualitativi, di identificare la/e miglior soluzione/i all’interno del dominio di soluzioni precedentemente identificate con l’applicazione degli algoritmi genetici. A partire dall’esplicitazione delle motivazioni che hanno alimentato questo lavoro, analizzata la letteratura esistente e le principali metodologie per l’acquisizione dati, verrà introdotto l’algoritmo per l’acquisizione automatica dei dati pedonali e la generazione di database contenenti i profili degli utenti rilevati. A seguire troverà spazio l’applicazione di questo strumento per manifestarne le potenzialità. Successivamente, introdotto il tool sviluppato per la definizione dei range dimensionali degli elementi caratteristici e il modello scelto per la corretta stima dei tempi di percorrenza pedonali, verrà esplorata la strutturazione della funzione obiettivo finalizzata alla ricerca del giusto trade off tra costi infrastrutturali e pedonali. Infine, l’applicazione degli algoritmi genetici, risultanti nell’identificazione del fronte paretiano, genererà il dominio di soluzioni ottime da vagliare attraverso l’approccio simulativo. La metodologia sviluppata si è rivelata uno strumento flessibile ed agevole, ma, allo stesso tempo, puntuale nel risolvere i problemi per cui è stata ideata. Le potenzialità della metodologia sviluppata vengono messe in risalto nel corso dell’elaborato grazie ad un caso di studio condotto.XXVI Ciclo198

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Semantic location extraction from crowdsourced data

    Get PDF
    Crowdsourced Data (CSD) has recently received increased attention in many application areas including disaster management. Convenience of production and use, data currency and abundancy are some of the key reasons for attracting this high interest. Conversely, quality issues like incompleteness, credibility and relevancy prevent the direct use of such data in important applications like disaster management. Moreover, location information availability of CSD is problematic as it remains very low in many crowd sourced platforms such as Twitter. Also, this recorded location is mostly related to the mobile device or user location and often does not represent the event location. In CSD, event location is discussed descriptively in the comments in addition to the recorded location (which is generated by means of mobile device's GPS or mobile communication network). This study attempts to semantically extract the CSD location information with the help of an ontological Gazetteer and other available resources. 2011 Queensland flood tweets and Ushahidi Crowd Map data were semantically analysed to extract the location information with the support of Queensland Gazetteer which is converted to an ontological gazetteer and a global gazetteer. Some preliminary results show that the use of ontologies and semantics can improve the accuracy of place name identification of CSD and the process of location information extraction
    corecore