179 research outputs found

    Exploring Himawari-8 geostationary observations for the advanced coastal monitoring of the Great Barrier Reef

    Get PDF
    Larissa developed an algorithm to enable water-quality assessment within the Great Barrier Reef (GBR) using weather satellite observations collected every 10 minutes. This unprecedented temporal resolution records the dynamic nature of water quality fluctuations for the entire GBR, with applications for improved monitoring and management

    Physics-based satellite-derived bathymetry for nearshore coastal waters in North America

    Get PDF
    Accurate bathymetric information is fundamental to safe maritime navigation and infrastructure development in the coastal zone, but is expensive to acquire with traditional methods. Satellite-derived bathymetry (SDB) has the potential to produce bathymetric maps at dramatically reduced cost per unit area and physics-based radiative transfer model inversion methods have been developed for this purpose. This thesis demonstrates the potential of physics-based SDB in North American coastal waters. First the utility of Landsat-8 data for SDB in Canadian waters was demonstrated. Given the need for precise atmospheric correction (AC) for deriving robust ocean color products such as bathymetry, the performances of different AC algorithms were then evaluated to determine the most appropriate AC algorithm for deriving ocean colour products such as bathymetry. Subsequently, an approach to minimize AC error was demonstrated for SDB in a coastal environment in Florida Keys, USA. Finally, an ensemble approach based on multiple images, with acquisitions ranging from optimal to sub-optimal conditions, was demonstrated. Based on the findings of this thesis, it was concluded that: (1) Landsat-8 data hold great promise for physics-based SDB in coastal environments, (2) the problem posed by imprecise AC can be minimized by assessing and quantifying bias as a function of environmental factors, and then removing that bias in the atmospherically corrected images, from which bathymetry is estimated, and (3) an ensemble approach to SDB can produce results that are very similar to those obtained with the best individual image, but can be used to reduce time spent on pre-screening and filtering of scenes

    Hyperspectral Remote Sensing Applied to Shallow Coastal Waters

    Get PDF
    A shallow water reflectance model was developed for application to optical remote sensing in highly diverse and complex coastal environments. A numerical inversion scheme, based on analytical parameterisation, was applied to airborne hyperspectral imagery collected over two regions of the Western Australian coastline; Jurien Bay and the Ningaloo Marine Park. Detailed maps of water quality, water depth and benthic cover classification were derived with a high degree of accuracy as compared to ground truth data

    Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    Get PDF
    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively

    Application of Sentinel-2 MSI in Arctic Research: Evaluating the Performance of Atmospheric Correction Approaches Over Arctic Sea Ice

    Get PDF
    Multispectral remote sensing may be a powerful tool for areal retrieval of biogeophysical parameters in the Arctic sea ice. The MultiSpectral Instrument on board the Sentinel-2 (S-2) satellites of the European Space Agency offers new possibilities for Arctic research; S-2A and S-2B provide 13 spectral bands between 443 and 2,202 nm and spatial resolutions between 10 and 60 m, which may enable the monitoring of large areas of Arctic sea ice. For an accurate retrieval of parameters such as surface albedo, the elimination of atmospheric influences in the data is essential. We therefore provide an evaluation of five currently available atmospheric correction processors for S-2 (ACOLITE, ATCOR, iCOR, Polymer, and Sen2Cor). We evaluate the results of the different processors using in situ spectral measurements of ice and snow and open water gathered north of Svalbard during RV Polarstern cruise PS106.1 in summer 2017. We used spectral shapes to assess performance for ice and snow surfaces. For open water, we additionally evaluated intensities. ACOLITE, ATCOR, and iCOR performed well over sea ice and Polymer generated the best results over open water. ATCOR, iCOR and Sen2Cor failed in the image-based retrieval of atmospheric parameters (aerosol optical thickness, water vapor). ACOLITE estimated AOT within the uncertainty range of AERONET measurements. Parameterization based on external data, therefore, was necessary to obtain reliable results. To illustrate consequences of processor selection on secondary products we computed average surface reflectance of six bands and normalized difference melt index (NDMI) on an image subset. Medians of average reflectance and NDMI range from 0.80–0.97 to 0.12–0.18 while medians for TOA are 0.75 and 0.06, respectively

    Fourth Annual Earth Resources Program Review. Volume 4: National Oceanic and Atmospheric Administration programs and US Naval Research Laboratory programs

    Get PDF
    Conference of Earth Resources Program with emphasis on analysis of data obtained by aircraf

    The Need for Accurate Pre-processing and Data Integration for the Application of Hyperspectral Imaging in Mineral Exploration

    Get PDF
    Die hyperspektrale Bildgebung stellt eine Schlüsseltechnologie in der nicht-invasiven Mineralanalyse dar, sei es im Labormaßstab oder als fernerkundliche Methode. Rasante Entwicklungen im Sensordesign und in der Computertechnik hinsichtlich Miniaturisierung, Bildauflösung und Datenqualität ermöglichen neue Einsatzgebiete in der Erkundung mineralischer Rohstoffe, wie die drohnen-gestützte Datenaufnahme oder digitale Aufschluss- und Bohrkernkartierung. Allgemeingültige Datenverarbeitungsroutinen fehlen jedoch meist und erschweren die Etablierung dieser vielversprechenden Ansätze. Besondere Herausforderungen bestehen hinsichtlich notwendiger radiometrischer und geometrischer Datenkorrekturen, der räumlichen Georeferenzierung sowie der Integration mit anderen Datenquellen. Die vorliegende Arbeit beschreibt innovative Arbeitsabläufe zur Lösung dieser Problemstellungen und demonstriert die Wichtigkeit der einzelnen Schritte. Sie zeigt das Potenzial entsprechend prozessierter spektraler Bilddaten für komplexe Aufgaben in Mineralexploration und Geowissenschaften.Hyperspectral imaging (HSI) is one of the key technologies in current non-invasive material analysis. Recent developments in sensor design and computer technology allow the acquisition and processing of high spectral and spatial resolution datasets. In contrast to active spectroscopic approaches such as X-ray fluorescence or laser-induced breakdown spectroscopy, passive hyperspectral reflectance measurements in the visible and infrared parts of the electromagnetic spectrum are considered rapid, non-destructive, and safe. Compared to true color or multi-spectral imagery, a much larger range and even small compositional changes of substances can be differentiated and analyzed. Applications of hyperspectral reflectance imaging can be found in a wide range of scientific and industrial fields, especially when physically inaccessible or sensitive samples and processes need to be analyzed. In geosciences, this method offers a possibility to obtain spatially continuous compositional information of samples, outcrops, or regions that might be otherwise inaccessible or too large, dangerous, or environmentally valuable for a traditional exploration at reasonable expenditure. Depending on the spectral range and resolution of the deployed sensor, HSI can provide information about the distribution of rock-forming and alteration minerals, specific chemical compounds and ions. Traditional operational applications comprise space-, airborne, and lab-scale measurements with a usually (near-)nadir viewing angle. The diversity of available sensors, in particular the ongoing miniaturization, enables their usage from a wide range of distances and viewing angles on a large variety of platforms. Many recent approaches focus on the application of hyperspectral sensors in an intermediate to close sensor-target distance (one to several hundred meters) between airborne and lab-scale, usually implying exceptional acquisition parameters. These comprise unusual viewing angles as for the imaging of vertical targets, specific geometric and radiometric distortions associated with the deployment of small moving platforms such as unmanned aerial systems (UAS), or extreme size and complexity of data created by large imaging campaigns. Accurate geometric and radiometric data corrections using established methods is often not possible. Another important challenge results from the overall variety of spatial scales, sensors, and viewing angles, which often impedes a combined interpretation of datasets, such as in a 2D geographic information system (GIS). Recent studies mostly referred to work with at least partly uncorrected data that is not able to set the results in a meaningful spatial context. These major unsolved challenges of hyperspectral imaging in mineral exploration initiated the motivation for this work. The core aim is the development of tools that bridge data acquisition and interpretation, by providing full image processing workflows from the acquisition of raw data in the field or lab, to fully corrected, validated and spatially registered at-target reflectance datasets, which are valuable for subsequent spectral analysis, image classification, or fusion in different operational environments at multiple scales. I focus on promising emerging HSI approaches, i.e.: (1) the use of lightweight UAS platforms, (2) mapping of inaccessible vertical outcrops, sometimes at up to several kilometers distance, (3) multi-sensor integration for versatile sample analysis in the near-field or lab-scale, and (4) the combination of reflectance HSI with other spectroscopic methods such as photoluminescence (PL) spectroscopy for the characterization of valuable elements in low-grade ores. In each topic, the state of the art is analyzed, tailored workflows are developed to meet key challenges and the potential of the resulting dataset is showcased on prominent mineral exploration related examples. Combined in a Python toolbox, the developed workflows aim to be versatile in regard to utilized sensors and desired applications

    A Machine Learning Algorithm for Himawari-8 Total Suspended Solids Retrievals in the Great Barrier Reef

    Get PDF
    Remote sensing of ocean colour has been fundamental to the synoptic-scale monitoring of marine water quality in the Great Barrier Reef (GBR). However, ocean colour sensors onboard low orbit satellites, such as the Sentinel-3 constellation, have insufficient revisit capability to fully resolve diurnal variability in highly dynamic coastal environments. To overcome this limitation, this work presents a physics-based coastal ocean colour algorithm for the Advanced Himawari Imager onboard the Himawari-8 geostationary satellite. Despite being designed for meteorological applications, Himawari-8 offers the opportunity to estimate ocean colour features every 10 min, in four broad visible and near-infrared spectral bands, and at 1 km2 spatial resolution. Coupled ocean–atmosphere radiative transfer simulations of the Himawari-8 bands were carried out for a realistic range of in-water and atmospheric optical properties of the GBR and for a wide range of solar and observation geometries. The simulated data were used to develop an inverse model based on artificial neural network techniques to estimate total suspended solids (TSS) concentrations directly from the Himawari-8 top-of-atmosphere spectral reflectance observations. The algorithm was validated with concurrent in situ data across the coastal GBR and its detection limits were assessed. TSS retrievals presented relative errors up to 75% and absolute errors of 2 mg L−1 within the validation range of 0.14 to 24 mg L−1, with a detection limit of 0.25 mg L−1. We discuss potential applications of Himawari-8 diurnal TSS products for improved monitoring and management of water quality in the GBR

    Toward an assessment of the fitness-for-purpose of Copernicus ocean colour data

    Get PDF
    The Copernicus Program has been established through the Regulation EU No377/2014 with the objective to ensure long-term and sustained provision of accurate and reliable data on environment and security through dedicated services. Among these, the Copernicus Marine Environment Monitoring Service and the marine component of the Climate Change Service, both rely on satellite ocean colour observations delivering data on water quality and climate relevant quantities such as chlorophyll-a concentration used as a proxy for phytoplankton biomass. This Report, building on the long-standing experience of the JRC on ocean colour, summarizes a number of recent investigations essential to assess the fitness-for-purpose of Copernicus ocean colour data products. These investigations embrace: i. The accuracy of radiometry data from the Ocean and Land Colour Instrument (OLCI) on board Sentinel-3a. The assessment is performed relying on geographically distributed in situ reference measurements from autonomous systems and dedicated oceanographic campaigns. ii. Uncertainty analysis of ocean colours radiometry data from a number of international missions. The analysis aims at assessing the potentials for the construction of Climate Data Records (CDRs) from independent missions. iii. The impact of adjacency effects in coastal data limiting the accuracy of ocean colour radiometry products. The study relies on state-of-the-art radiative transfer simulations and aims at quantifying adjacency effects in space data from sensors exhibiting different signal-to-noise ratios. iv. Uncertainties affecting in situ radiometry data as a result of the lack of comprehensive characterizations of field instruments. This is an attempt to illustrate the fundamental importance of comprehensive radiometric calibrations and characterizations for in situ instruments supporting validation activities. v. Reproducibility of the experimental determination of pigments concentrations for the validation of satellite data products. The analysis documents the differences affecting the quantification of pigments concentrations through the applicationJRC.D.2-Water and Marine Resource

    Snow and Ice Applications of AVHRR in Polar Regions: Report of a Workshop

    Get PDF
    The third symposium on Remote Sensing of Snow and Ice, organized by the International Glaciological Society, took place in Boulder, Colorado, 17-22 May 1992. As part of this meeting a total of 21 papers was presented on snow and ice applications of Advanced Very High Resolution Radiometer (AVHRR) satellite data in polar regions. Also during this meeting a NASA sponsored Workshop was held to review the status of polar surface measurements from AVHRR. In the following we have summarized the ideas and recommendations from the workshop, and the conclusions of relevant papers given during the regular symposium sessions. The seven topics discussed include cloud masking, ice surface temperature, narrow-band albedo, ice concentration, lead statistics, sea-ice motion and ice-sheet studies with specifics on applications, algorithms and accuracy, following recommendations for future improvements. In general, we can affirm the strong potential of AVHRR for studying sea ice and snow covered surfaces, and we highly recommend this satellite data set for long-term monitoring of polar process studies. However, progress is needed to reduce the uncertainty of the retrieved parameters for all of the above mentioned topics to make this data set useful for direct climate applications such as heat balance studies and others. Further, the acquisition and processing of polar AVHRR data must become better coordinated between receiving stations, data centers and funding agencies to guarantee a long-term commitment to the collection and distribution of high quality data
    • …
    corecore