309 research outputs found

    Antenna Modeller for Synthetic Aperture Radar Applications. Electromagnetic and Radiometric Considerations

    Get PDF
    The objective of the present Master Thesis is designing an optimizer of the excitation coefficients of a phased array antenna

    Radar satellite imagery for humanitarian response. Bridging the gap between technology and application

    Get PDF
    This work deals with radar satellite imagery and its potential to assist of humanitarian operations. As the number of displaced people annually increases, both hosting countries and relief organizations face new challenges which are often related to unclear situations and lack of information on the number and location of people in need, as well as their environments. It was demonstrated in numerous studies that methods of earth observation can deliver this important information for the management of crises, the organization of refugee camps, and the mapping of environmental resources and natural hazards. However, most of these studies make use of -high-resolution optical imagery, while the role of radar satellites is widely neglected. At the same time, radar sensors have characteristics which make them highly suitable for humanitarian response, their potential to capture images through cloud cover and at night in the first place. Consequently, they potentially allow quicker response in cases of emergencies than optical imagery. This work demonstrates the currently unused potential of radar imagery for the assistance of humanitarian operations by case studies which cover the information needs of specific emergency situations. They are thematically grouped into topics related to population, natural hazards and the environment. Furthermore, the case studies address different levels of scientific objectives: The main intention is the development of innovative techniques of digital image processing and geospatial analysis as an answer on the identified existing research gaps. For this reason, novel approaches are presented on the mapping of refugee camps and urban areas, the allocation of biomass and environmental impact assessment. Secondly, existing methods developed for radar imagery are applied, refined, or adapted to specifically demonstrate their benefit in a humanitarian context. This is done for the monitoring of camp growth, the assessment of damages in cities affected by civil war, and the derivation of areas vulnerable to flooding or sea-surface changes. Lastly, to foster the integration of radar images into existing operational workflows of humanitarian data analysis, technically simple and easily-adaptable approaches are suggested for the mapping of rural areas for vaccination campaigns, the identification of changes within and around refugee camps, and the assessment of suitable locations for groundwater drillings. While the studies provide different levels of technical complexity and novelty, they all show that radar imagery can largely contribute to the provision of a variety of information which is required to make solid decisions and to effectively provide help in humanitarian operations. This work furthermore demonstrates that radar images are more than just an alternative image source for areas heavily affected by cloud cover. In fact, what makes them valuable is their information content regarding the characteristics of surfaces, such as shape, orientation, roughness, size, height, moisture, or conductivity. All these give decisive insights about man-made and natural environments in emergency situations and cannot be provided by optical images Finally, the findings of the case studies are put into a larger context, discussing the observed potential and limitations of the presented approaches. The major challenges are summarized which need be addressed to make radar imagery more useful in humanitarian operations in the context of upcoming technical developments. New radar satellites and technological progress in the fields of machine learning and cloud computing will bring new opportunities. At the same time, this work demonstrated the large need for further research, as well as for the collaboration and transfer of knowledge and experiences between scientists, users and relief workers in the field. It is the first extensive scientific compilation of this topic and the first step for a sustainable integration of radar imagery into operational frameworks to assist humanitarian work and to contribute to a more efficient provision of help to those in need.Die vorliegende Arbeit beschĂ€ftigt sich mit bildgebenden Radarsatelliten und ihrem potenziellen Beitrag zur UnterstĂŒtzung humanitĂ€rer EinsĂ€tze. Die jĂ€hrlich zunehmende Zahl an vertriebenen oder geflĂŒchteten Menschen stellt sowohl AufnahmelĂ€nder als auch humanitĂ€re Organisationen vor große Herausforderungen, da sie oft mit unĂŒbersichtlichen VerhĂ€ltnissen konfrontiert sind. Effektives Krisenmanagement, die Planung und Versorgung von FlĂŒchtlingslagern, sowie der Schutz der betroffenen Menschen erfordern jedoch verlĂ€ssliche Angaben ĂŒber Anzahl und Aufenthaltsort der GeflĂŒchteten und ihrer natĂŒrlichen Umwelt. Die Bereitstellung dieser Informationen durch Satellitenbilder wurde bereits in zahlreichen Studien aufgezeigt. Sie beruhen in der Regel auf hochaufgelösten optischen Aufnahmen, wĂ€hrend bildgebende Radarsatelliten bisher kaum Anwendung finden. Dabei verfĂŒgen gerade Radarsatelliten ĂŒber Eigenschaften, die hilfreich fĂŒr humanitĂ€re EinsĂ€tze sein können, allen voran ihre UnabhĂ€ngigkeit von Bewölkung oder Tageslicht. Dadurch ermöglichen sie in KrisenfĂ€llen verglichen mit optischen Satelliten eine schnellere Reaktion. Diese Arbeit zeigt das derzeit noch ungenutzte Potenzial von Radardaten zur UnterstĂŒtzung humanitĂ€rer Arbeit anhand von Fallstudien auf, in denen konkrete Informationen fĂŒr ausgewĂ€hlte Krisensituationen bereitgestellt werden. Sie sind in die Themenbereiche Bevölkerung, Naturgefahren und Ressourcen aufgeteilt, adressieren jedoch unterschiedliche wissenschaftliche AnsprĂŒche: Der Hauptfokus der Arbeit liegt auf der Entwicklung von innovativen Methoden zur Verarbeitung von Radarbildern und rĂ€umlichen Daten als Antwort auf den identifizierten Forschungsbedarf in diesem Gebiet. Dies wird anhand der Kartierung von FlĂŒchtlingslagern zur AbschĂ€tzung ihrer Bevölkerung, zur Bestimmung von Biomasse, sowie zur Ermittlung des Umwelteinflusses von FlĂŒchtlingslagern aufgezeigt. DarĂŒber hinaus werden existierende oder erprobte AnsĂ€tze fĂŒr die Anwendung im humanitĂ€ren Kontext angepasst oder weiterentwickelt. Dies erfolgt im Rahmen von Fallstudien zur Dynamik von FlĂŒchtlingslagern, zur Ermittlung von SchĂ€den an GebĂ€uden in Kriegsgebieten, sowie zur Erkennung von Risiken durch Überflutung. Zuletzt soll die Integration von Radardaten in bereits existierende AblĂ€ufe oder Arbeitsroutinen in der humanitĂ€ren Hilfe anhand technisch vergleichsweise einfacher AnsĂ€tze vorgestellt und angeregt werden. Als Beispiele dienen hier die radargestĂŒtzte Kartierung von entlegenen Gebieten zur UnterstĂŒtzung von Impfkampagnen, die Identifizierung von VerĂ€nderungen in FlĂŒchtlingslagern, sowie die Auswahl geeigneter Standorte zur Grundwasserentnahme. Obwohl sich die Fallstudien hinsichtlich ihres Innovations- und KomplexitĂ€tsgrads unterscheiden, zeigen sie alle den Mehrwert von Radardaten fĂŒr die Bereitstellung von Informationen, um schnelle und fundierte Planungsentscheidungen zu unterstĂŒtzen. DarĂŒber hinaus wird in dieser Arbeit deutlich, dass Radardaten fĂŒr humanitĂ€re Zwecke mehr als nur eine Alternative in stark bewölkten Gebieten sind. Durch ihren Informationsgehalt zur Beschaffenheit von OberflĂ€chen, beispielsweise hinsichtlich ihrer Rauigkeit, Feuchte, Form, GrĂ¶ĂŸe oder Höhe, sind sie optischen Daten ĂŒberlegen und daher fĂŒr viele Anwendungsbereiche im Kontext humanitĂ€rer Arbeit besonders. Die in den Fallstudien gewonnenen Erkenntnisse werden abschließend vor dem Hintergrund von Vor- und Nachteilen von Radardaten, sowie hinsichtlich zukĂŒnftiger Entwicklungen und Herausforderungen diskutiert. So versprechen neue Radarsatelliten und technologische Fortschritte im Bereich der Datenverarbeitung großes Potenzial. Gleichzeitig unterstreicht die Arbeit einen großen Bedarf an weiterer Forschung, sowie an Austausch und Zusammenarbeit zwischen Wissenschaftlern, Anwendern und EinsatzkrĂ€ften vor Ort. Die vorliegende Arbeit ist die erste umfassende Darstellung und wissenschaftliche Aufarbeitung dieses Themenkomplexes. Sie soll als Grundstein fĂŒr eine langfristige Integration von Radardaten in operationelle AblĂ€ufe dienen, um humanitĂ€re Arbeit zu unterstĂŒtzen und eine wirksame Hilfe fĂŒr Menschen in Not ermöglichen

    Detection of Building Damages in High Resolution SAR Images based on SAR Simulation

    Get PDF

    Offshore oil spill detection using synthetic aperture radar

    Get PDF
    Among the different types of marine pollution, oil spill has been considered as a major threat to the sea ecosystems. The source of the oil pollution can be located on the mainland or directly at sea. The sources of oil pollution at sea are discharges coming from ships, offshore platforms or natural seepage from sea bed. Oil pollution from sea-based sources can be accidental or deliberate. Different sensors to detect and monitor oil spills could be onboard vessels, aircraft, or satellites. Vessels equipped with specialised radars, can detect oil at sea but they can cover a very limited area. One of the established ways to monitor sea-based oil pollution is the use of satellites equipped with Synthetic Aperture Radar (SAR).The aim of the work presented in this thesis is to identify optimum set of feature extracted parameters and implement methods at various stages for oil spill detection from Synthetic Aperture Radar (SAR) imagery. More than 200 images of ERS-2, ENVSAT and RADARSAT 2 SAR sensor have been used to assess proposed feature vector for oil spill detection methodology, which involves three stages: segmentation for dark spot detection, feature extraction and classification of feature vector. Unfortunately oil spill is not only the phenomenon that can create a dark spot in SAR imagery. There are several others meteorological and oceanographic and wind induced phenomena which may lead to a dark spot in SAR imagery. Therefore, these dark objects also appear similar to the dark spot due to oil spill and are called as look-alikes. These look-alikes thus cause difficulty in detecting oil spill spots as their primary characteristic similar to oil spill spots. To get over this difficulty, feature extraction becomes important; a stage which may involve selection of appropriate feature extraction parameters. The main objective of this dissertation is to identify the optimum feature vector in order to segregate oil spill and ‘look-alike’ spots. A total of 44 Feature extracted parameters have been studied. For segmentation, four methods; based on edge detection, adaptive theresholding, artificial neural network (ANN) segmentation and the other on contrast split segmentation have been implemented. Spot features are extracted from both the dark spots themselves and their surroundings. Classification stage was performed using two different classification techniques, first one is based on ANN and the other based on a two-stage processing that combines classification tree analysis and fuzzy logic. A modified feature vector, including both new and improved features, is suggested for better description of different types of dark spots. An ANN classifier using full spectrum of feature parameters has also been developed and evaluated. The implemented methodology appears promising in detecting dark spots and discriminating oil spills from look-alikes and processing time is well below any operational service requirements

    A novel satellite mission concept for upper air water vapour, aerosol and cloud observations using integrated path differential absorption LiDAR limb sounding

    Get PDF
    We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 ”rad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010

    Interferometric Synthetic Aperture RADAR and Radargrammetry towards the Categorization of Building Changes

    Get PDF
    The purpose of this work is the investigation of SAR techniques relying on multi image acquisition for fully automatic and rapid change detection analysis at building level. In particular, the benefits and limitations of a complementary use of two specific SAR techniques, InSAR and radargrammetry, in an emergency context are examined in term of quickness, globality and accuracy. The analysis is performed using spaceborne SAR data

    Antenna Modeller for Synthetic Aperture Radar Applications. Electromagnetic and Radiometric Considerations

    Get PDF
    The objective of the present Master Thesis is designing an optimizer of the excitation coefficients of a phased array antenna

    Potential of Spaceborne X & L-Band SAR-Data for Soil Moisture Mapping Using GIS and its Application to Hydrological Modelling: the Example of Gottleuba Catchment, Saxony / Germany

    Get PDF
    Hydrological modelling is a powerful tool for hydrologists and engineers involved in the planning and development of integrated approach for the management of water resources. With the recent advent of computational power and the growing availability of spatial data, RS and GIS technologies can augment to a great extent the conventional methods used in rainfall runoff studies; it is possible to accurately describe watershed characteristics in particularly when determining runoff response to rainfall input. The main objective of this study is to apply the potential of spaceborne SAR data for soil moisture retrieval in order to improve the spatial input parameters required for hydrological modelling. For the spatial database creation, high resolution 2 m aerial laser scanning Digital Terrain Model (DTM), soil map, and landuse map were used. Rainfall records were transformed into a runoff through hydrological parameterisation of the watershed and the river network using HEC-HMS software for rainfall runoff simulation. The Soil Conservation Services Curve Number (SCS-CN) and Soil Moisture Accounting (SMA) loss methods were selected to calculate the infiltration losses. In microwave remote sensing, the study of how the microwave interacts with the earth terrain has always been interesting in interpreting the satellite SAR images. In this research soil moisture was derived from two different types of Spaceborne SAR data; TerraSAR-X and ALOS PALSAR (L band). The developed integrated hydrological model was applied to the test site of the Gottleuba Catchment area which covers approximately 400 sqkm, located south of Pirna (Saxony, Germany). To validate the model historical precipitation data of the past ten years were performed. The validated model was further optimized using the extracted soil moisture from SAR data. The simulation results showed a reasonable match between the simulated and the observed hydrographs. Quantitatively the study concluded that based on SAR data, the model could be used as an expeditious tool of soil moisture mapping which required for hydrological modelling
    • 

    corecore