24 research outputs found

    An operational radiometric correction technique for shadow reduction in multispectral uav imagery

    Get PDF
    This study focuses on the recovery of information from shadowed pixels in RGB or multispectral imagery sensed from unmanned aerial vehicles (UAVs). The proposed technique is based on the concept that a property characterizing a given surface is its spectral reflectance, i.e., the ratio between the flux reflected by the surface and the radiant flux received by the surface, and this ratio is usually similar under direct-plus-diffuse irradiance and under diffuse irradiance when a Lambertian behavior can be assumed. Scene-dependent elements, such as trees, shrubs, man-made constructions, or terrain relief, can block part of the direct irradiance (usually sunbeams), in which part of the surface only receives diffuse irradiance. As a consequence, shadowed surfaces comprising pixels of the image created by the UAV remote sensor appear. Regardless of whether the imagery is analyzed by means of photointerpretation or digital classification methods, when the objective is to create land cover maps, it is hard to treat these areas in a coherent way in terms of the areas receiving direct and diffuse irradiance. The hypothesis of the present work is that the relationship between irradiance conditions in shadowed areas and non-shadowed areas can be determined by following classical empirical line techniques for fulfilling the objective of a coherent treatment in both kinds of areas. The novelty of the presented method relies on the simultaneous recovery of information in non-shadowed and shadowed areas by the in situ spectral reflectance measurements of characterized Lambertian targets followed by smoothing of the penumbra area. Once in the lab, firstly, we accurately detected the shadowed pixels by combining two well-known techniques for the detection of the shadowed areas: (1) using a physical approach based on the sun's position and the digital surface model of the area covered by the imagery; and (2) the image-based approach using the histogram properties of the intensity image. In this paper, we present the benefits of the combined usage of both techniques. Secondly, we applied a fit between non-shadowed and shadowed areas by using a twin set of spectrally characterized target sets. One set was placed under direct and diffuse irradiance (non-shadowed targets), whereas the second set (with the same spectral characteristics) was placed under diffuse irradiance (shadowed targets). Assuming that the reflectance of the homologous targets of each set was the same, we approximated the diffuse incoming irradiance through an empirical line correction. The model was applied to all detected shadowed areas in the whole scene. Finally, a smoothing filter was applied to the penumbra transitions. The presented empirical method allowed the operational and coherent recovery of information from shadowed areas, which is very common in high-resolution UAV imagery

    드론을 활용한 위성 지표반사도 산출물 공간 패턴 분석

    Get PDF
    학위논문(석사) -- 서울대학교대학원 : 농업생명과학대학 생태조경·지역시스템공학부(생태조경학), 2021.8. 조대솔.High-resolution satellites are assigned to monitor land surface in detail. The reliable surface reflectance (SR) is the fundamental in terrestrial ecosystem modeling so the temporal and spatial validation is essential. Usually based on multiple ground control points (GCPs), field spectroscopy guarantees the temporal continuity. Due to limited sampling, however, it hardly illustrates the spatial pattern. As a map, the pixelwise spatial variability of SR products is not well-documented. In this study, we introduced drone-based hyperspectral image (HSI) as a reference and compared the map with Sentinel 2 and Landsat 8 SR products on a heterogeneous rice paddy landscape. First, HSI was validated by field spectroscopy and swath overlapping, which assured qualitative radiometric accuracy within the viewing geometry. Second, HSI was matched to the satellite SRs. It involves spectral and spatial aggregation, co-registration and nadir bidirectional reflectance distribution function (BRDF)-adjusted reflectance (NBAR) conversion. Then, we 1) quantified the spatial variability of the satellite SRs and the vegetation indices (VIs) including NDVI and NIRv by APU matrix, 2) qualified them pixelwise by theoretical error budget and 3) examined the improvement by BRDF normalization. Sentinel 2 SR exhibits overall good agreement with drone HSI while the two NIRs are biased up to 10%. Despite the bias in NIR, the NDVI shows a good match on vegetated areas and the NIRv only displays the discrepancy on built-in areas. Landsat 8 SR was biased over the VIS bands (-9 ~ -7.6%). BRDF normalization just contributed to a minor improvement. Our results demonstrate the potential of drone HSI to replace in-situ observation and evaluate SR or atmospheric correction algorithms over the flat terrain. Future researches should replicate the results over the complex terrain and canopy structure (i.e. forest).원격탐사에서 지표 반사도(SR)는 지표정보를 비파괴적이고 즉각적인 방법으로 전달해주는 매개체 역할을 한다. 신뢰할 수 있는 SR은 육상 생태계 모델링의 기본이고, 이에 따라 SR의 시공간적 검증이 요구된다. 일반적으로 SR은 여러 지상 기준점(GCP)을 기반으로 하는 현장 분광법을 통해서 시간적 연속성이 보장된다. 그러나 현장 분광법은 제한적인 샘플링으로 공간 패턴을 거의 보여주지 않아, 위성 SR의 픽셀 별 공간 변동성은 잘 분석되지 않았다. 본 연구에서는 드론 기반의 초분광 영상(HSI)을 참고자료로 도입하여, 이를 이질적인 논 경관에서 Sentinel 2 및 Landsat 8 SR과 비교하였다. 우선, 드론 HSI는 현장 분광법 및 경로 중첩을 통해서 관측각도 범위 내에서 정성적인 방사 측정을 보장한다고 검증되었다. 이후, 드론 HSI는 위성 SR의 분광반응특성, 공간해상도 및 좌표계를 기준으로 맞춰졌고, 관측 기하를 통일하기 위해서 드론 HIS와 위성 SR은 각각 양방향반사율분포함수 (BRDF) 정규화 반사도 (NBAR)로 변환되었다. 마지막으로, 1) APU 행렬으로 위성 SR과 NDVI, NIRv를 포함하는 식생지수(VI)의 공간변동성을 정량화 했고, 2) 대기보정의 이론적 오차를 기준으로 SR과 VI를 픽셀별로 평가했고, 3) BRDF 정규화를 통한 개선 사항을 검토했다. Sentinel 2 SR은 드론 HSI와 전반적으로 좋은 일치를 보이나, 두 NIR 채널은 최대 10% 편향되었다. NIR의 편향은 식생지수에서 토지 피복에 따라 다른 영향을 미쳤다. NDVI는 식생에서는 낮은 편향을 보여줬고, NIRv는 도시시설물 영역에서만 높은 편향을 보였다. Landsat 8 SR은 VIS 채널에 대해 편향되었다 (-9 ~ -7.6%). BRDF 정규화는 위성 SR의 품질을 개선했지만, 그 영향은 부수적이었다. 본 연구에서는 평탄한 지형에서 드론 HSI가 현장 관측을 대체할 수 있고, 따라서 위성 SR이나 대기보정 알고리즘을 평가하는데 활용될 수 있다는 것을 보였다. 향후 연구에서는 산림으로 대상지를 확대하여, 지형과 캐노피 구조가 드론 HSI 및 위성 SR에 미치는 영향을 분석할 필요가 있다.Chapter 1. Introduction 1 1.1 Background 1 Chapter 2. Method 3 2.1 Study Site 3 2.2 Drone campaign 4 2.3 Data processing 4 2.3.1 Sensor calibration 5 2.3.2 Bidirectional reflectance factor (BRF) calculation 7 2.3.3 BRDF correction 7 2.3.4 Orthorectification 8 2.3.5 Spatial Aggregation 9 2.3.6 Co-registration 10 2.4 Satellite dataset 10 2.4.2 Landsat 8 12 Chapter 3. Result and Discussion 12 3.1 Drone BRF map quality assessment 12 3.1.1 Radiometric accuracy 12 3.1.2 BRDF effect 15 3.2 Spatial variability in satellite surface reflectance product 16 3.2.1 Sentinel 2B (10m) 17 3.2.2 Sentinel 2B (20m) 22 3.2.3 Landsat 8 26 Chapter 4. Conclusion 28 Supplemental Materials 30 Bibliography 34 Abstract in Korean 43석

    Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery

    Get PDF
    Altres ajuts: Joan-Cristian Padró is a recipient of the FI-DGR scholarship grant (2016B_00410). Xavier Pons is a recipient of the ICREA Academia Excellence in Research Grant (2016-2020).Open-pit mine is still an unavoidable activity but can become unsustainable without the restoration of degraded sites. Monitoring the restoration after extractive activities is a legal requirement for mine companies and public administrations in many countries, involving financial provisions for environmental liabilities. The objective of this contribution is to present a rigorous, low-cost and easy-to-use application of Unmanned Aerial Systems (UAS) for supporting opencast mining and restoration monitoring, complementing the inspections with very high (<10 cm) spatial resolution multispectral imagery, and improving any restoration documentation with detailed land cover maps. The potential of UAS as a tool to control restoration works is presented in a calcareous quarry that has undergone different post-mining restoration actions in the last 20 years, representing 4 reclaimed stages. We used a small (<2 kg) drone equipped with a multispectral sensor, along with field spectroradiometer measurements that were used to radiometrically correct the UAS sensor data. Imagery was processed with photogrammetric and Remote Sensing and Geographical Information Systems software, resulting in spectral information, vegetation and soil indices, structural information and land cover maps. Spectral data and land cover classification, which were validated through ground-truth plots, aided in the detection and quantification of mine waste dumping, bare soil and other land cover extension. Moreover, plant formations and vegetation development were evaluated, allowing a quantitative, but at the same time visual and intuitive comparison with the surrounding reference systems. The protocol resulting from this research constitutes a pipeline solution intended for the implementation by public administrations and privates companies for precisely evaluating restoration dynamics in an expedient manner at a very affordable budget. Furthermore, the proposed solution prevents subjective interpretations by providing objective data, which integrate new technologies at the service of scientists, environmental managers and decision makers

    Comparison of UAS and Sentinel-2 Multispectral Imagery for Water Quality Monitoring: A Case Study for Acid Mine Drainage Affected Areas (SW Spain)

    Get PDF
    Uncrewed Aerial Systems (UAS) and satellites are used for monitoring and assessing the quality of surface waters. Combining both sensors in a joint tool may scale local water quality retrieval models to regional and global scales by translating UAS-based models to satellite imagery. The main objective of this study is to examine whether Sentinel-2 (S2) data can complement UAS data, specifically from the MicaSense RedEdge MX-Dual sensor, for inland water quality monitoring in mining environments affected by acid mine drainage (AMD). For this purpose, a comparison between UAS reflectance maps and atmospherically corrected S2 imagery was performed. S2 data were processed with Case 2 Regional Coast Colour (C2RCC) and Case 2 Regional Coast Colour for Complex waters (C2X) atmospheric correction (AC) processors. The correlation between the UAS data and the atmospherically corrected S2 data was evaluated on a band-by-band and a pixel-by-pixel basis, and the compatibility of the spectral data was analyzed through statistical methods. The results showed C2RCC and C2X performed better for acidic greenish-blue and non-acidic greenish-brown water bodies concerning the UAS data than for acidic dark reddish-brown waters. However, significant differences in reflectance between the UAS sensor and both S2 AC processors have been detected. The poor agreement between sensors should be considered when combining data from both instruments since these could have further consequences in developing multi-scale modelsThis study was supported in part by the Erasmus Mundus Joint Master Degree (EMJMD) in Water and Coastal Management (WACOMA) with the contribution of the Erasmus+ Programme of the European Union. This work was also supported by Plan Andaluz de Investigación RNM 166 Environmental radioactivity research group (LB) and partially by the FEDER UHU2020-21 Project. UAS equipment from University of Cádiz Drone Service was supported by MINECO infrastructure projects (EQC2018-00446-P and UNCA-2013-1969). MDB thanks the Spanish Ministry of Science and Innovation for the Postdoctoral Fellowship granted under application reference IJC2018-035056-I. This research was also funded by the Spanish Ministry of Science and Innovation, the Spanish State Research Agency, the European Regional Development Fund MCIN/AEI/10.13039/501100011033 (Sen2Coast Project; RTI 2018-098784-J-I00), and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades from Andalusian Government through the Andalusian FEDER operational program 2014-2020 (A1123060E0_PYC20 RE 032 UHU) and the call 2020 for collaborative interest projects in the field of the Innovation Ecosystems of the International Excellence Centers). We thank to Tharsis Mining & Metallurgy for allowing us to collect the samples in the abandoned mining areas that belong to the company since 2018. The authors also gratefully acknowledge the support of the Guest Editor, the Assistant Editor and the three anonymous reviewers for their comments and positive criticisms, which notably improved the quality of the original pape

    Uso de Sentinel-2 y datos auxiliares para la generación, mediante clasificación de imágenes, del Mapa de Usos y Cubiertas del Suelo de Cataluña 2017

    Full text link
    [EN] This paper details the process of generating the 2017 Land Use/Land Cover Map of Catalonia (MUCSC) using automatic classification of satellite imagery and auxiliary cartographic and remote sensing data. A total of 60 images (6 dates for each of the 10 tiles covering Catalonia) captured by the Sentininel-2A and Sentinel-2B satellites were used. These images as well as texture variables, terrain models derived from lidar processing, and vegetation and wetness indices were classified using the k-Nearest Neighbor algorithm (kNN) to obtain a map with 25 categories. The categories related to urbanized areas (urban areas, urbanizations and industrial zones/ commercial areas), road infrastructures and burned areas were edited using official cartographic datasets of the Catalan Government [Generalitat]. The results have an overall accuracy greater than 98 %, which was evaluated with a set of more than 8.6 million independent test pixels. This work represents an important milestone in terms of the computational effort it involves due to the territorial extension (32 000 km2), the spatial detail of between 2 and 20 m, the use of up to 58 variables, the relative completeness of the legend and the level of success achieved. The MUCSC 2017, which is part of a 30-year quinquennial series beginning in 1987, can be downloaded in different formats (also in MMZX: new ISO 19165-2) and at resolutions of 10 m and 30 m pixel side from the Ministry of Territory and Sustainability website of the Catalan Government.[ES] En este artículo se detalla el proceso de generación del Mapa de Usos y Cubiertas del Suelo de Cataluña (MUCSC) 2017 mediante clasificación automática de imágenes de satélite y datos cartográficos y de teledetección auxiliares. Con este propósito se han utilizado un total de 60 imágenes (6 fechas sobre cada una de las 10 teselas que cubren Cataluña) captadas por los satélites 2A y 2B de la constelación Sentinel-2. Estos datos, junto con variables de textura, modelos del terreno derivados del procesado lidar para todo el territorio e índices de vegetación y humedad, han sido clasificados con el algoritmo de inteligencia artificial kNN para obtener un mapa de 25 categorías, de las cuales las referentes a zonas urbanizadas (zonas urbanas, urbanizaciones y zonas industriales y comerciales), vías de comunicación y zonas quemadas han sido editadas utilizando bases cartográficas oficiales de la Generalitat [Gobierno] de Catalunya. Los resultados muestran un acierto global superior al 98 % evaluado mediante un conjunto de más de 8,6 millones de píxeles independientes de test. Este trabajo representa un hito importante tanto por el esfuerzo de cálculo que ha supuesto (extensión territorial de 32.000 km2, detalle espacial de entre 2 y 20 m y uso de hasta 58 variables), como por la relativa completitud de la leyenda y por el nivel de acierto conseguido. El MUCSC 2017, que forma parte de una serie quinquenal de 30 años desde 1987, está disponible para descarga en distintos formatos (también en MMZX: nueva ISO 19165-2) y a resoluciones de 10 m y 30 m de lado de píxel a través de la página web en el Departamento de Territorio y Sostenibilidad de la Generalitat de Catalunya.This study was funded by the Generalitat (Grumets SGR2014-1491) and by the Spanish MCIU through the NEWFORLAND project (RTI2018-099397-B-C21 MCIU/AEI/ERDF, EU). X. Pons is the recipient of an ICREA Academia 2016 -2020 Excellence in Research Grant.González-Guerrero, O.; Pons, X. (2020). The 2017 Land Use/Land Cover Map of Catalonia based on Sentinel-2 images and auxiliary data. Revista de Teledetección. 0(55):81-92. https://doi.org/10.4995/raet.2020.13112OJS8192055Cea, C., Cristóbal, J., Pons, X. 2007. An improved methodology to map snow cover by means of Landsat and MODIS imagery. En: Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. Barcelona. IEEE International, 4217-4220. DOI https://doi.org/10.1109/IGARSS.2007.4423781Elvidge, C.D., Sutton, P.C., Wagner, T.W., Ryznar, R., Goetz, S.J., Smith, A.J., Jantz, C., Seto, K., Imhoff, M.L., Vogelmann, J., wang, Y.Q., Milesi, C., Nemani, R. 2004. Urbanization. En: Gutman, G. et al. (ed.). Land change science: Observing, monitoring, and understanding trajectories of change on the earth's surface. Dordrecht, Países Bajos: Kluwer Academic Publishers, pp. 315-328. https://doi.org/10.1007/978-1-4020-2562-4_18ESA. 2015. Sentinel-2 User Handbook. Recuperado de https://sentinel.esa.int/documents/247904/685211/ Sentinel-2_User_Handbook Último acceso: 4 de febrero, 2020.González-Guerrero, O., Pons-Fernández, X., Bassols- Morey, R., Camps-Fernandez, F.J. 2019. Dinàmica de les superfícies de conreu a Catalunya mitjançant Teledetecció en el període 1987-2012. Quaderns Agraris, 46, 59-91.Hansen, M.C., Loveland, T.R. 2012. A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66-74. https://doi.org/10.1016/j.rse.2011.08.024ICC. 1992. Mapa d'usos del sòl de Catalunya. Institut Cartogràfic de Catalunya. Barcelona. 118 p.ICGC (2017). Datos lidar. Institut Cartogràfic i Geològic de Catalunya. Recuperado de https://www.icgc.cat/ es/Descargas/Elevaciones/Datos-lidar Último acceso: 1 de mayo, 2020.Loveland, T.R., Dwyer, J.L. 2012. Landsat: Building a strong future. Remote Sensing of Environment, 122, 22-29. https://doi.org/10.1016/j.rse.2011.09.022Moré, G., Pons, X. 2007. Influencia del número de imágenes en la calidad de la cartografía detallada de vegetación forestal. Revista de Teledetección, 28, 61- 68. Recuperado de http://www.aet.org.es/revistas/ revista28/7-111_More_revisado.pdf Último acceso: 1 de mayo, 2020.Padial, M., Vidal-Macua, J.J., Serra, P., Ninyerola, M., Pons, X. 2019. Aplicación de filtros multicriterio basados en NDVI para la extracción de áreas de entrenamiento desde la base de datos SIOSE. Ruiz L.A., Estornell J., Calle A., Antuña-Sánchez J.C. (eds) Teledetección: hacia una visión global del cambio climático, pp. 311-314. ISBN: 978- 84-1320-038-5. Libro de actas XVIII Congreso de la Asociación Española de Teledetección, 24 - 27 Septiembre, Valladolid (Spain).Padró, J.C., Pons, X., Aragonés, D., Díaz-Delgado, R., García, D., Bustamante, J., Pesquer, L., Domingo- Marimon, C., González-Guerrero, O., Cristóbal, J., Doktor, D., Lange, M. 2017. Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy. Remote Sensing, 9(12), 1319. https://doi.org/10.3390/rs9121319Padró, J.C., Muñoz, F.J., Ávila, L.A., Pesquer, L., Pons, X. 2018. Radiometric Correction of Landsat-8 and Sentinel-2A Scenes Using Drone Imagery in Synergy with Field Spectroradiometry. Remote Sensing, 10(11), 1687. https://doi.org/10.3390/rs10111687Pons, X. 2004. MiraMon. Sistema de Información Geográfica y software de Teledetección. Centre de Recerca Ecològica i Aplicacions Forestals, CREAF. Bellaterra. ISBN: 84-931323-4-9. Recuperado de http://www.miramon.cat/Index_es.htm Último acceso: 1 de mayo, 2020.Pons, X., Ninyerola, M. 2008. Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data. International Journal of Climatology, 28(13), 1821-1834. https://doi.org/10.1002/joc.1676Pons, X., Pesquer, L., Cristóbal, J., González- Guerrero, O. 2014. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. International Journal of Applied Earth Observation and Geoinformation, 33, 243-254. https://doi.org/10.1016/j.jag.2014.06.002Pons X., Masó J. 2016. A comprehensive open package format for preservation and distribution of geospatial data and metadata. Computers & Geosciences, 97, 89-97. https://doi.org/10.1016/j.cageo.2016.09.001Townshend, J.R., Masek, J.G., Huang, C., Vermote, E.F., Gao, F., Channan, S., Sexton, J.O., Feng, M., Narasimhan, R., Kim, D., Song, K., Song, D., Song, X. P., Noojipady, P., Tan, B., Hansen, M.C., Li, M., Wolfe, R.E. 2012. Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. International Journal of Digital Earth, 5(5), 373-397. https://doi.org/10.1080/17538947.2012.713190Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S.N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P.S., Vermote, E.F., Vogelmann, J., Wulder, M.A., Wynne, R. 2008. Free access to Landsat imagery. Science, 320(5879), 1011. https://doi.org/10.1126/science.320.5879.1011aWulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R., Woodcock, C.E. 2012. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2-10. https://doi.org/10.1016/j.rse.2012.01.01

    Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. Compact multi-spectral sensors that can be mounted on lightweight drones are now widely available and applied within the geo- and environmental sciences. However; the spatial consistency and radiometric quality of data from such sensors is relatively poorly explored beyond the lab; in operational settings and against other sensors. This study explores the extent to which accurate hemispherical-conical reflectance factors (HCRF) and vegetation indices (specifically: normalised difference vegetation index (NDVI) and chlorophyll red-edge index (CHL)) can be derived from a low-cost multispectral drone-mounted sensor (Parrot Sequoia). The drone datasets were assessed using reference panels and a high quality 1 m resolution reference dataset collected near-simultaneously by an airborne imaging spectrometer (HyPlant). Relative errors relating to the radiometric calibration to HCRF values were in the 4 to 15% range whereas deviations assessed for a maize field case study were larger (5 to 28%). Drone-derived vegetation indices showed relatively good agreement for NDVI with both HyPlant and Sentinel 2 products (R2 = 0.91). The HCRF; NDVI and CHL products from the Sequoia showed bias for high and low reflective surfaces. The spatial consistency of the products was high with minimal view angle effects in visible bands. In summary; compact multi-spectral sensors such as the Parrot Sequoia show good potential for use in index-based vegetation monitoring studies across scales but care must be taken when assuming derived HCRF to represent the true optical properties of the imaged surface.European Space Agency (ESA)European Union’s Horizon 202

    Mapping surface features of an Alpine glacier through multispectral and thermal drone surveys

    Full text link
    Glacier surfaces are highly heterogeneous mixtures of ice, snow, light-absorbing impurities and debris material. The spatial and temporal variability of these components affects ice surface characteristics and strongly influences glacier energy and mass balance. Remote sensing offers a unique opportunity to characterize glacier optical and thermal properties, enabling a better understanding of different processes occurring at the glacial surface. In this study, we evaluate the potential of optical and thermal data collected from field and drone platforms to map the abundances of predominant glacier surfaces (i.e., snow, clean ice, melting ice, dark ice, cryoconite, dusty snow and debris cover) on the Zebrù glacier in the Italian Alps. The drone surveys were conducted on the ablation zone of the glacier on 29 and 30 July 2020, corresponding to the middle of the ablation season. We identified very high heterogeneity of surface types dominated by melting ice (30% of the investigated area), dark ice (24%), clean ice (19%) and debris cover (17%). The surface temperature of debris cover was inversely related to debris-cover thickness. This relation is influenced by the petrology of debris cover, suggesting the importance of lithology when considering the role of debris over glaciers. Multispectral and thermal drone surveys can thus provide accurate high-resolution maps of different snow and ice types and their temperature, which are critical elements to better understand the glacier’s energy budget and melt rates

    StratoTrans : Unmanned Aerial System (UAS) 4G communication framework applied on the monitoring of road traffic and linear infrastructure

    Get PDF
    This study provides an operational solution to directly connect drones to internet by means of 4G telecommunications and exploit drone acquired data, including telemetry and imagery but focusing on video transmission. The novelty of this work is the application of 4G connection to link the drone directly to a data server where video (in this case to monitor road traffic) and imagery (in the case of linear infrastructures) are processed. However, this framework is appliable to any other monitoring purpose where the goal is to send real-time video or imagery to the headquarters where the drone data is processed, analyzed, and exploited. We describe a general framework and analyze some key points, such as the hardware to use, the data stream, and the network coverage, but also the complete resulting implementation of the applied unmanned aerial system (UAS) communication system through a Virtual Private Network (VPN) featuring a long-range telemetry high-capacity video link (up to 15 Mbps, 720 p video at 30 fps with 250 ms of latency). The application results in the real-time exploitation of the video, obtaining key information for traffic managers such as vehicle tracking, vehicle classification, speed estimation, and roundabout in-out matrices. The imagery downloads and storage is also performed thorough internet, although the Structure from Motion postprocessing is not real-time due to photogrammetric workflows. In conclusion, we describe a real-case application of drone connection to internet thorough 4G network, but it can be adapted to other applications. Although 5G will -in time- surpass 4G capacities, the described framework can enhance drone performance and facilitate paths for upgrading the connection of on-board devices to the 5G network
    corecore