1,312 research outputs found

    ANALYSIS OF CIRCULATORY SYSTEM PATHOLOGIES IN HEAD CT DATA – HEMORRHAGE LOCALIZATION

    Get PDF
    Acute ischemic stroke and intracranial hemorrhages (ICH) represent critical situations for the patient. Rapid accurate diagnosis and therapy are required to prevent serious lifelong consequences or death. In the case of suspected head circulatory pathology, computed tomography (CT) is often the first choice among imaging techniques because of its availability, speed and reliability. In order to refine and speed up the diagnostic process, advanced algorithms implemented in computer aided diagnosis systems are currently being developed. This paper presents approaches to an automatic ICH localization as a part of a research project aimed at the development of machine learning methods for the analysis of circulatory disorders in head CT scans. Three designed deep learning-based algorithms are described and compared for prediction of the exact position of ICH within a 3D CT scan, and in two cases also for classification into the sub-types. An objective evaluation of the methods is presented along with a discussion of the results. Further possibilities for circulatory diseases analysis in head CT scans using modern algorithms are also discussed

    Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images

    Get PDF
    We propose a novel attention gate (AG) model for medical image analysis that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules when using convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed AG models are evaluated on a variety of tasks, including medical image classification and segmentation. For classification, we demonstrate the use case of AGs in scan plane detection for fetal ultrasound screening. We show that the proposed attention mechanism can provide efficient object localisation while improving the overall prediction performance by reducing false positives. For segmentation, the proposed architecture is evaluated on two large 3D CT abdominal datasets with manual annotations for multiple organs. Experimental results show that AG models consistently improve the prediction performance of the base architectures across different datasets and training sizes while preserving computational efficiency. Moreover, AGs guide the model activations to be focused around salient regions, which provides better insights into how model predictions are made. The source code for the proposed AG models is publicly available.Comment: Accepted for Medical Image Analysis (Special Issue on Medical Imaging with Deep Learning). arXiv admin note: substantial text overlap with arXiv:1804.03999, arXiv:1804.0533

    A Review on Computer Aided Diagnosis of Acute Brain Stroke.

    Full text link
    Amongst the most common causes of death globally, stroke is one of top three affecting over 100 million people worldwide annually. There are two classes of stroke, namely ischemic stroke (due to impairment of blood supply, accounting for ~70% of all strokes) and hemorrhagic stroke (due to bleeding), both of which can result, if untreated, in permanently damaged brain tissue. The discovery that the affected brain tissue (i.e., 'ischemic penumbra') can be salvaged from permanent damage and the bourgeoning growth in computer aided diagnosis has led to major advances in stroke management. Abiding to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines, we have surveyed a total of 177 research papers published between 2010 and 2021 to highlight the current status and challenges faced by computer aided diagnosis (CAD), machine learning (ML) and deep learning (DL) based techniques for CT and MRI as prime modalities for stroke detection and lesion region segmentation. This work concludes by showcasing the current requirement of this domain, the preferred modality, and prospective research areas

    Applying Deep Learning To Identify Imaging Biomarkers To Predict Cardiac Outcomes In Cancer Patients

    Get PDF
    Cancer patients are a unique population with increased mortality from cardiovascular disease, however only half of high-risk patients are medically optimized. Physicians ascertain cardiovascular risk from several risk predictors using demographic information, family history, and imaging data. The Agatston score, a measure of total calcium burden in coronary arteries on CT scans, is the current best predictor for major adverse cardiac events (MACE). Yet, the score is limited as it does not provide information on atherosclerotic plaque characteristics or distribution. In this study, we use deep learning techniques to develop an imaging-based biomarker that can robustly predict MACE in lung cancer patients. We selected participants with screen-detected lung cancer from the National Lung Screening Trial (NLST) and used cardiovascular mortality as our primary outcome. We applied automated segmentation algorithms to low-dose chest CT scans from NLST participants to segment cardiac substructures. Following segmentation, we extracted radiomic features from selected cardiac structures. We then used this dataset to train a regression model to predict cardiovascular death. We used a pre-trained nnU-Net model to successfully segment large cardiac structures on CT scans. These automated large cardiac structures had features that were predictive of MACE. We then successfully extract radiomic features from our areas of interest and use this high-dimensional dataset to train a regression model to predict MACE. We demonstrated that automated segmentation algorithms can result in low-cost non-invasive predictive biomarkers for MACE. We were able to demonstrate that radiomic feature extraction from segmented substructures can be used to develop a high-dimensional biomarker. We hope that such a scoring system can help physicians adequately determine cardiovascular risk and intervene, resulting in better patient outcomes

    Non-inferiority of Deep Learning Model to Segment Acute Stroke on Non-contrast CT Compared to Neuroradiologists

    Full text link
    Purpose: To develop a deep learning model to segment the acute ischemic infarct on non-contrast Computed Tomography (NCCT). Materials and Methods In this retrospective study, 227 Head NCCT examinations from 200 patients enrolled in the multicenter DEFUSE 3 trial were included. Three experienced neuroradiologists (experts A, B and C) independently segmented the acute infarct on each study. The dataset was randomly split into 5 folds with training and validation cases. A 3D deep Convolutional Neural Network (CNN) architecture was optimized for the data set properties and task needs. The input to the model was the NCCT and the output was a segmentation mask. The model was trained and optimized on expert A. The outcome was assessed by a set of volume, overlap and distance metrics. The predicted segmentations of the best model and expert A were compared to experts B and C. Then we used a paired Wilcoxon signed-rank test in a one-sided test procedure for all metrics to test for non-inferiority in terms of bias and precision. Results: The best performing model reached a Surface Dice at Tolerance (SDT)5mm of 0.68 \pm 0.04. The predictions were non-inferior when compared to independent experts in terms of bias and precision (paired one-sided test procedure for differences in medians and bootstrapped standard deviations with non-inferior boundaries of -0.05, 2ml, and 2mm, p < 0.05, n=200). Conclusion: For the segmentation of acute ischemic stroke on NCCT, our 3D CNN trained with the annotations of one neuroradiologist is non-inferior when compared to two independent neuroradiologists

    Development and assessment of learning-based vessel biomarkers from CTA in ischemic stroke

    Get PDF

    Development and assessment of learning-based vessel biomarkers from CTA in ischemic stroke

    Get PDF
    corecore