25 research outputs found

    Exploring the limits of variational passive microwave retrievals

    Get PDF
    2017 Summer.Includes bibliographical references.Passive microwave observations from satellite platforms constitute one of the most important data records of the global observing system. Operational since the late 1970s, passive microwave data underpin climate records of precipitation, sea ice extent, water vapor, and more, and contribute significantly to numerical weather prediction via data assimilation. Detailed understanding of the observation errors in these data is key to maximizing their utility for research and operational applications alike. However, the treatment of observation errors in this data record has been lacking and somewhat divergent when considering the retrieval and data assimilation communities. In this study, some limits of passive microwave imager data are considered in light of more holistic treatment of observation errors. A variational retrieval, named the CSU 1DVAR, was developed for microwave imagers and applied to the GMI and AMSR2 sensors for ocean scenes. Via an innovative method to determine forward model error, this retrieval accounts for error covariances across all channels used in the iteration. This improves validation in more complex scenes such as high wind speed and persistently cloudy regimes. In addition, it validates on par with a benchmark dataset without any tuning to in-situ observations. The algorithm yields full posterior error diagnostics and its physical forward model is applicable to other sensors, pending intercalibration. This retrieval is used to explore the viability of retrieving parameters at the limits of the available information content from a typical microwave imager. Retrieval of warm rain, marginal sea ice, and falling snow are explored with the variational retrieval. Warm rain retrieval shows some promise, with greater sensitivity than operational GPM algorithms due to leveraging CloudSat data and accounting for drop size distribution variability. Marginal sea ice is also detected with greater sensitivity than a standard operational retrieval. These studies ultimately show that while a variational algorithm maximizes the effective signal to noise ratio of these observations, hard limitations exist due to the finite information content afforded by a typical microwave imager

    Spaceborne Microwave Radiometry: Calibration, Intercalibration, and Science Applications.

    Full text link
    Spaceborne microwave radiometry is the backbone for assimilation into numerical weather forecasts and provides important information for Earth and environment science. The extensive radiometric data must go through the process of calibration and intercalibration prior to science application. This work deals with the entire process by providing systematic methods and addressing critical challenges. These methods have been applied to NASA and JAXA’s Global Precipitation Measurement (GPM) mission and many other radiometers to make important contributions and to solve long-standing issues with coastal science applications. Specifically, it addresses four important challenges: 1) improving cold calibration with scan dependent characterization; 2) reducing the uncertainty of warm calibration; 3) deriving calibration dependence across the full range of brightness temperatures with both cold and warm calibration; and 4) investigating calibration variability and dependence on geophysical parameters. One critical challenge in science applications of radiometer data is that coastal science products from radiometers have previously been largely unavailable due to land contamination. We therefore develop methods to correct for land contamination and derive coastal science products. This thesis addresses these challenges by developing their solutions and then applying them to the GPM mission and its radiometer constellation.PhDAtmospheric, Oceanic and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120728/1/johnxun_1.pd

    Observational needs of sea surface temperature

    Get PDF
    Sea surface temperature (SST) is a fundamental physical variable for understanding, quantifying and predicting complex interactions between the ocean and the atmosphere. Such processes determine how heat from the sun is redistributed across the global oceans, directly impacting large- and small-scale weather and climate patterns. The provision of daily maps of global SST for operational systems, climate modeling and the broader scientific community is now a mature and sustained service coordinated by the Group for High Resolution Sea Surface Temperature (GHRSST) and the CEOS SST Virtual Constellation (CEOS SST-VC). Data streams are shared, indexed, processed, quality controlled, analyzed, and documented within a Regional/Global Task Sharing (R/GTS) framework, which is implemented internationally in a distributed manner. Products rely on a combination of low-Earth orbit infrared and microwave satellite imagery, geostationary orbit infrared satellite imagery, and in situ data from moored and drifting buoys, Argo floats, and a suite of independent, fully characterized and traceable in situ measurements for product validation (Fiducial Reference Measurements, FRM). Research and development continues to tackle problems such as instrument calibration, algorithm development, diurnal variability, derivation of high-quality skin and depth temperatures, and areas of specific interest such as the high latitudes and coastal areas. In this white paper, we review progress versus the challenges we set out 10 years ago in a previous paper, highlight remaining and new research and development challenges for the next 10 years (such as the need for sustained continuity of passive microwave SST using a 6.9 GHz channel), and conclude with needs to achieve an integrated global high-resolution SST observing system, with focus on satellite observations exploited in conjunction with in situ SSTs. The paper directly relates to the theme of Data Information Systems and also contributes to Ocean Observing Governance and Ocean Technology and Networks within the OceanObs2019 objectives. Applications of SST contribute to all the seven societal benefits, covering Discovery; Ecosystem Health & Biodiversity; Climate Variability & Change; Water, Food, & Energy Security; Pollution & Human Health; Hazards and Maritime Safety; and the Blue Economy

    Remote Sensing of Environmental Changes in Cold Regions

    Get PDF
    This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing

    Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

    Get PDF
    Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    Half a century of satellite remote sensing of sea-surface temperature

    Get PDF
    Sea-surface temperature (SST) was one of the first ocean variables to be studied from earth observation satellites. Pioneering images from infrared scanning radiometers revealed the complexity of the surface temperature fields, but these were derived from radiance measurements at orbital heights and included the effects of the intervening atmosphere. Corrections for the effects of the atmosphere to make quantitative estimates of the SST became possible when radiometers with multiple infrared channels were deployed in 1979. At the same time, imaging microwave radiometers with SST capabilities were also flown. Since then, SST has been derived from infrared and microwave radiometers on polar orbiting satellites and from infrared radiometers on geostationary spacecraft. As the performances of satellite radiometers and SST retrieval algorithms improved, accurate, global, high resolution, frequently sampled SST fields became fundamental to many research and operational activities. Here we provide an overview of the physics of the derivation of SST and the history of the development of satellite instruments over half a century. As demonstrated accuracies increased, they stimulated scientific research into the oceans, the coupled ocean-atmosphere system and the climate. We provide brief overviews of the development of some applications, including the feasibility of generating Climate Data Records. We summarize the important role of the Group for High Resolution SST (GHRSST) in providing a forum for scientists and operational practitioners to discuss problems and results, and to help coordinate activities world-wide, including alignment of data formatting and protocols and research. The challenges of burgeoning data volumes, data distribution and analysis have benefited from simultaneous progress in computing power, high capacity storage, and communications over the Internet, so we summarize the development and current capabilities of data archives. We conclude with an outlook of developments anticipated in the next decade or so
    corecore