3,966 research outputs found

    Capacity Dimensioning of HSDPA Urban Network

    Get PDF
    To launch a cellular network, prelaunch capacity dimensioning is performed which includes coverage estimation and throughput prediction. Cellular companies in developing countries like Pakistan are only providing 2G services, while 3G services are yet to be launched. Although a lot of research has been done on 3G services in developed countries but there is very little knowledge regarding practical aspects of planning and optimization of 3G networks in third world countries like Pakistan. This research paper includes a thorough analysis of factors that affect capacity of 3G networks, including radio propagation models. Various propagation models are studied and propagation constants of Standard Propagation Model are tuned according to topography of Islamabad. The performance analysis of these propagation models is done using Matlab and results are verified through planning tool Atoll and field measurements. Based on analysis of these results capacity dimensioning, in terms of number of sites, is carried out for an urban network of Islamabad

    Hotspot wireless LANs to enhance the performance of 3G and beyond cellular networks

    Get PDF

    Performance Analysis of Micro Unmanned Airborne Communication Relays for Cellular Networks

    Full text link
    This paper analyses the potential of utilising small unmanned-aerial-vehicles (SUAV) as wireless relays for assisting cellular network performance. Whilst high altitude wireless relays have been investigated over the past 2 decades, the new class of low cost SUAVs offers new possibilities for addressing local traffic imbalances and providing emergency coverage.We present field-test results from an SUAV test-bed in both urban and rural environments. The results show that trough-to-peak throughput improvements can be achieved for users in poor coverage zones. Furthermore, the paper reinforces the experimental study with large-scale network analysis using both stochastic geometry and multi-cell simulation results.Comment: conferenc

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Planning Solar in Energy-managed Cellular Networks

    Get PDF
    There has been a lot of interest recently on the energy efficiency and environmental impact of wireless networks. Given that the base stations are the network elements that use most of this energy, much research has dealt with ways to reduce the energy used by the base stations by turning them off during periods of low load. In addition to this, installing a solar harvesting sys- tem composed of solar panels, batteries, charge con- trollers and inverters is another way to further reduce the network environmental impact and some research has been dealing with this for individual base stations. In this paper, we show that both techniques are tightly coupled. We propose a mathematical model that captures the synergy between solar installation over a network and the dynamic operation of energy-managed base stations. We study the interactions between the two methods for networks of hundreds of base stations and show that the order in which each method is intro- duced into the system does make a difference in terms of cost and performance. We also show that installing solar is not always the best solution even when the unit cost of the solar energy is smaller than the grid cost. We conclude that planning the solar installation and energy management of the base stations have to be done jointly
    • …
    corecore