35 research outputs found

    GPS Anomaly Detection And Machine Learning Models For Precise Unmanned Aerial Systems

    Get PDF
    The rapid development and deployment of 5G/6G networks have brought numerous benefits such as faster speeds, enhanced capacity, improved reliability, lower latency, greater network efficiency, and enablement of new applications. Emerging applications of 5G impacting billions of devices and embedded electronics also pose cyber security vulnerabilities. This thesis focuses on the development of Global Positioning Systems (GPS) Based Anomaly Detection and corresponding algorithms for Unmanned Aerial Systems (UAS). Chapter 1 provides an overview of the thesis background and its objectives. Chapter 2 presents an overview of the 5G architectures, their advantages, and potential cyber threat types. Chapter 3 addresses the issue of GPS dropouts by taking the use case of the Dallas-Fort Worth (DFW) airport. By analyzing data from surveillance drones in the (DFW) area, its message frequency, and statistics on time differences between GPS messages were examined. Chapter 4 focuses on modeling and detecting false data injection (FDI) on GPS. Specifically, three scenarios, including Gaussian noise injection, data duplication, data manipulation are modeled. Further, multiple detection schemes that are Clustering-based and reinforcement learning techniques are deployed and detection accuracy were investigated. Chapter 5 shows the results of Chapters 3 and 4. Overall, this research provides a categorization and possible outlier detection to minimize the GPS interference for UAS enhancing the security and reliability of UAS operations

    The latest advances in wireless communication in aviation, wind turbines and bridges

    Get PDF
    Present-day technologies used in SHM (Structural Health Monitoring) systems in many implementations are based on wireless sensor networks (WSN). In the context of the continuous development of these systems, the costs of the elements that form the monitoring system are decreasing. In this situation, the challenge is to select the optimal number of sensors and the network architecture, depending on the wireless system’s other parameters and requirements. It is a challenging task for WSN to provide scalability to cover a large area, fault tolerance, transmission reliability, and energy efficiency when no events are detected. In this article, fundamental issues concerning wireless communication in structural health monitoring systems (SHM) in the context of non-destructive testing sensors (NDT) were presented. Wireless technology developments in several crucial areas were also presented, and these include engineering facilities such as aviation and wind turbine systems as well as bridges and associated engineering facilities

    L-Band System Engineering - Concepts of Use, Systems Performance Requirements, and Architecture

    Get PDF
    This document is being provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-band and L-band Communications Standard Development. Task 7 was motivated by the five year technology assessment performed for the Federal Aviation Administration (FAA) under the joint FAA-EUROCONTROL cooperative research Action Plan (AP-17), also known as the Future Communications Study (FCS). It was based on direction provided by the FAA project-level agreement (PLA FY09_G1M.02-02v1) for "New ATM Requirements-Future Communications." Task 7 was separated into two distinct subtasks, each aligned with specific work elements and deliverable items. Subtask 7-1 addressed C-band airport surface data communications standards development, systems engineering, test bed development, and tests/demonstrations to establish operational capability for what is now referred to as the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2, which is the subject of this report, focused on preliminary systems engineering and support of joint FAA/EUROCONTROL development and evaluation of a future L-band (960 to 1164 MHz) air/ground (A/G) communication system known as the L-band digital aeronautical communications system (L-DACS), which was defined during the FCS. The proposed L-DACS will be capable of providing ATM services in continental airspace in the 2020+ timeframe. Subtask 7-2 was performed in two phases. Phase I featured development of Concepts of Use, high level functional analyses, performance of initial L-band system safety and security risk assessments, and development of high level requirements and architectures. It also included the aforementioned support of joint L-DACS development and evaluation, including inputs to L-DACS design specifications. Phase II provided a refinement of the systems engineering activities performed during Phase I, along with continued joint FAA/EUROCONTROL L-DACS development and evaluation support

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande

    Methodology for avionics integration optimisation

    Get PDF
    Every state-of-art aircraft has a complex distributed systems of avionics Line Replaceable Units/Modules (LRUs/LRMs), networked by several data buses. These LRUs are becoming more complex because of the increasing number of new avionics functions need to be integrated in an avionics LRU. The evolution of avionics data buses and architectures have moved from distributed analogue and federated architecture to digital Integrated Modular Avionics (IMA). IMA architecture allows suppliers to develop their own LRUs/LRMs capable of specific features that can then be offered to Original Equipment Manufacturers (OEMs) as Commercial-Off-The-Shelf (COTS) products. In the meantime, the aerospace industry has been investigating new solutions to develop smaller, lighter and more capable avionics LRUs to be integrated into avionics architecture. Moreover, the complexity of the overall avionics architecture and its impact on cable length, weight, power consumption, reliability and maintainability of avionics systems encouraged manufacturers to incorporate efficient avionics architectures in their aircraft design process. However, manual design cannot concurrently fulfil the complexity and interconnectivity of system requirements and optimality. Thus, developing computer-aided design (CAD), Model Based System Engineering (MBSE) tools and mathematical modelling for optimisation of IMA architecture has become an active research area in avionics systems integration. In this thesis, a general method and tool are developed for optimisation of avionics architecture and improving its operational capability. The tool has three main parts including a database of avionics LRUs, mathematical modelling of the architectures and optimisation algorithms. The developed avionics database includes avionics LRUs with their technical specifications and operational capabilities for each avionics function. A MCDM method, SAW, is used to quantify and rank each avionics LRU’s operational capability. Based on the existing avionics LRUs in the database and aircraft level avionics requirements two avionics architectures are proposed i.e. AFCS architecture (SSA) and avionics architecture (LSA). The proposed avionics architectures are then modelled using mathematical programming. Further, the allocation of avionics LRUs to avionics architecture and mapping the avionics LRUs to their installation locations are defined as an assignment problem in Integer Programming (IP) format. The defined avionics architecture optimisation problem is to optimise avionics architecture in terms of mass, volume, power consumption, MTBF and operational capability. The problems are solved as both single-objective and multi-objective optimisation using the branch-and-bound algorithm, weighted sum method and Particle Swarm Optimisation (PSO) algorithm. Finally, the tool provides a semi-automatic optimisation of avionics architecture. This helps avionics system architects to investigate and evaluate various architectures in the early stage of design from an LRU perspective. It can also be used to upgrade a legacy avionics architecture.Aerospac
    corecore