5 research outputs found

    Cooperation strategies for inter-cell interference mitigation in OFDMA systems

    Get PDF
    Recently the use of modern cellular networks has drastically changed with the emerging Long Term Evolution Advanced (LTE-A) technology. Homogeneous networks which were initially designed for voice-centric and low data rates face unprecedented challenges for meeting the increasing traffic demands of high data-driven applications and their important quality of service requirements. Therefore, these networks are moving towards the so called Heterogeneous Networks (HetNets). HetNets represent a new paradigm for cellular networks as their nodes have different characteristics such as transmission power and radio frequency coverage area. Consequently, a HetNet shows completely different interference characteristics compared to homogeneous deployment and attention must be paid to these disparities when different tiers are collocated together. This is mostly due to the potential spectrum frequency reuse by the involved tiers in the HetNets. Hence, efficient inter-cell interference mitigation solutions in co-channel deployments of HetNets remain a challenge for both industry and academic researchers. This thesis focuses on LTE-A HetNet systems which are based on Orthogonal Frequency Division Multiplexing Access (OFDMA) modulation. Our aim is to investigate the aggressive interference issue that appears when different types of base stations are jointly deployed together and especially in two cases, namely Macro-Femtocells and Macro-Picocells co-existence. We propose new practical power adjustment solutions for managing inter-cell interference dynamically for both cases. In the first part dedicated to Femtocells and Macrocell coexistence, we design a MBS-assisted femtocell power adjustment strategy which takes into account femtocells users performance while mitigating the inter-cell interference on victim macrocell users. Further, we propose a new cooperative and context-aware interference mitigation method which is derived for realistic scenarios involving mobility of users and their varying locations. We proved numerically that the Femtocells are able to maintain their interference under a desirable threshold by adjusting their transmission power. Our strategies provide an efficient means for achieving the desired level of macrocell/femtocell throughput trade-off. In the second part of the studies where Picocells are deployed under the umbrella of the Macrocell, we paid a special attention and efforts to the interference management in the situation where Picocells are configured to set up a cell range expansion. We suggest a MBS-assisted collaborative scheme powered by an analytical model to predict the mobility of Macrocell users passing through the cell range expansion area of the picocell. Our goal is to adapt the muting ratio ruling the frequency resource partitioning between both tiers according to the mobility behavior of the range-expanded users, thereby providing an efficient trade-off between Macrocell and Picocell achievable throughputs.Récemment, l'utilisation des réseaux cellulaires a radicalement changé avec l’émergence de la quatrième génération (4G) de systèmes de télécommunications mobiles LTE/LTE-A (Long Term Evolution-Advanced). Les réseaux de générations précédentes (3G), initialement conçus pour le transport de la voix et les données à faible et moyen débits, ont du mal à faire face à l’augmentation accrue du trafic de données multimédia tout en répondant à leurs fortes exigences et contraintes en termes de qualité de service (QdS). Pour mieux répondre à ces besoins, les réseaux 4G ont introduit le paradigme des Réseaux Hétérogènes (HetNet).Les réseaux HetNet introduisent une nouvelle notion d’hétérogénéité pour les réseaux cellulaires en introduisant le concept des smalls cells (petites cellules) qui met en place des antennes à faible puissance d’émission. Ainsi, le réseau est composé de plusieurs couches (tiers) qui se chevauchent incluant la couverture traditionnelle macro-cellulaire, les pico-cellules, les femto-cellules, et les relais. Outre les améliorations des couvertures radio en environnements intérieurs, les smalls cells permettent d’augmenter la capacité du système par une meilleure utilisation du spectre et en rapprochant l’utilisateur de son point d’accès au réseau. Une des conséquences directes de cette densification cellulaire est l’interférence générée entre les différentes cellules des diverses couches quand ces dernières réutilisent les mêmes fréquences. Aussi, la définition de solutions efficaces de gestion des interférences dans ce type de systèmes constitue un de leurs défis majeurs. Cette thèse s’intéresse au problème de gestion des interférences dans les systèmes hétérogènes LTE-A. Notre objectif est d’apporter des solutions efficaces et originales au problème d’interférence dans ce contexte via des mécanismes d’ajustement de puissance des petites cellules. Nous avons pour cela distingués deux cas d’étude à savoir un déploiement à deux couches macro-femtocellules et macro-picocellules. Dans la première partie dédiée à un déploiement femtocellule et macrocellule, nous concevons une stratégie d'ajustement de puissance des femtocellules assisté par la macrocellule et qui prend en compte les performances des utilisateurs des femtocells tout en atténuant l'interférence causée aux utilisateurs des macrocellules sur leurs liens montants. Cette solution offre l’avantage de la prise en compte de paramètres contextuels locaux aux femtocellules (tels que le nombre d’utilisateurs en situation de outage) tout en considérant des scénarios de mobilité réalistes. Nous avons montré par simulation que les interférences sur les utilisateurs des macrocellules sont sensiblement réduites et que les femtocellules sont en mesure de dynamiquement ajuster leur puissance d'émission pour atteindre les objectifs fixés en termes d’équilibre entre performance des utilisateurs des macrocellules et celle de leurs propres utilisateurs. Dans la seconde partie de la thèse, nous considérons le déploiement de picocellules sous l'égide de la macrocellule. Nous nous sommes intéressés ici aux solutions d’extension de l’aire picocellulaire qui permettent une meilleure association utilisateur/cellule permettant de réduire l’interférence mais aussi offrir une meilleure efficacité spectrale. Nous proposons donc une approche basée sur un modèle de prédiction de la mobilité des utilisateurs qui permet de mieux ajuster la proportion de bande passante à partager entre la macrocellule et la picocellule en fonction de la durée de séjour estimée de ces utilisateurs ainsi que de leur demandes en bande passante. Notre solution a permis d’offrir un bon compromis entre les débits réalisables de la Macro et des picocellules

    Towards UAV Assisted 5G Public Safety Network

    Get PDF
    Ensuring ubiquitous mission-critical public safety communications (PSC) to all the first responders in the public safety network is crucial at an emergency site. The first responders heavily rely on mission-critical PSC to save lives, property, and national infrastructure during a natural or human-made emergency. The recent advancements in LTE/LTE-Advanced/5G mobile technologies supported by unmanned aerial vehicles (UAV) have great potential to revolutionize PSC. However, limited spectrum allocation for LTE-based PSC demands improved channel capacity and spectral efficiency. An additional challenge in designing an LTE-based PSC network is achieving at least 95% coverage of the geographical area and human population with broadband rates. The coverage requirement and efficient spectrum use in the PSC network can be realized through the dense deployment of small cells (both terrestrial and aerial). However, there are several challenges with the dense deployment of small cells in an air-ground heterogeneous network (AG-HetNet). The main challenges which are addressed in this research work are integrating UAVs as both aerial user and aerial base-stations, mitigating inter-cell interference, capacity and coverage enhancements, and optimizing deployment locations of aerial base-stations. First, LTE signals were investigated using NS-3 simulation and software-defined radio experiment to gain knowledge on the quality of service experienced by the user equipment (UE). Using this understanding, a two-tier LTE-Advanced AG-HetNet with macro base-stations and unmanned aerial base-stations (UABS) is designed, while considering time-domain inter-cell interference coordination techniques. We maximize the capacity of this AG-HetNet in case of a damaged PSC infrastructure by jointly optimizing the inter-cell interference parameters and UABS locations using a meta-heuristic genetic algorithm (GA) and the brute-force technique. Finally, considering the latest specifications in 3GPP, a more realistic three-tier LTE-Advanced AG-HetNet is proposed with macro base-stations, pico base-stations, and ground UEs as terrestrial nodes and UABS and aerial UEs as aerial nodes. Using meta-heuristic techniques such as GA and elitist harmony search algorithm based on the GA, the critical network elements such as energy efficiency, inter-cell interference parameters, and UABS locations are all jointly optimized to maximize the capacity and coverage of the AG-HetNet

    Latency and Reliability Aware Edge Computation Offloading in 5G Networks

    Get PDF
    Empowered by recent technological advances and driven by the ever-growing population density and needs, the conception of 5G has opened up the expectations of what mobile networks are capable of to heights never seen before, promising to unleash a myriad of new business practices and paving the way for a surging number of user equipments to carry out novel service operations. The advent of 5G and networks beyond will hence enable the vision of Internet of Things (IoT) and smart city with its ubiquitous and heterogeneous use cases belonging to various verticals operating on a common underlying infrastructure, such as smart healthcare, autonomous driving, and smart manufacturing, while imposing extreme unprecedented Quality of Service (QoS) requirements in terms of latency and reliability among others. Due to the necessity of those modern services such as traffic coordination, industrial processes, and mission critical applications to perform heavy workload computations on the collected input, IoT devices such as cameras, sensors, and Cyber-Physical Systems (CPSs), which have limited energy and processing capabilities are put under an unusual strain to seamlessly carry out the required service computations. While offloading the devices' workload to cloud data centers with Mobile Cloud Computing (MCC) remains a possible alternative which also brings about a high computation reliability, the latency incurred from this approach would prevent from satisfying the services' QoS requirements, in addition to elevating the load in the network core and backhaul, rendering MCC an inadequate solution for handling the 5G services' required computations. In light of this development, Multi-access Edge Computing (MEC) has been proposed as a cutting edge technology for realizing a low-latency computation offloading by bringing the cloud to the vicinity of end-user devices as processing units co-located within base stations leveraging the virtualization technique. Although it promises to satisfy the stringent latency service requirements, realizing the edge-cloud solution is coupled with various challenges, such as the edge servers' restricted capacity, their reduced processing reliability, the IoT devices' limited offloading energy, the wireless offloading channels' often weak quality, the difficulty to adapt to dynamic environment changes and to under-served networks, and the Network Operators (NOs)' cost-efficiency concerns. In light of those conditions, the NOs are consequently looking to devise efficient innovative computation offloading schemes through leveraging novel technologies and architectures for guaranteeing the seamless provisioning of modern services with their stringent latency and reliability QoS requirements, while ensuring the effective utilization of the various network and devices' available resources. Leveraging a hierarchical arrangement of MEC with second-tier edge servers co-located within aggregation nodes and macro-cells can expand the edge network's capability, while utilizing Unmanned Aerial Vehicles (UAVs) to provision the MEC service via UAV-mounted cloudlets can increase the availability, flexibility, and scalability of the computation offloading solution. Moreover, aiding the MEC system with UAVs and Intelligent Reflecting Surfaces (IRSs) can improve the computation offloading performance by enhancing the wireless communication channels' conditions. By effectively leveraging those novel technologies while tackling their challenges, the edge-cloud paradigm will bring about a tremendous advancement to 5G networks and beyond, opening the door to enabling all sorts of modern and futuristic services. In this dissertation, we attempt to address key challenges linked to realizing the vision of a low-latency and high-reliability edge computation offloading in modern networks while exploring the aid of multiple 5G network technologies. Towards that end, we provide novel contributions related to the allocation of network and devices' resources as well as the optimization of other offloading parameters, and thereby efficiently utilizing the underlying infrastructure such as to enable energy and cost-efficient computation offloading schemes, by leveraging several customized solutions and optimization techniques. In particular, we first tackle the computation offloading problem considering a multi-tier MEC with a deployed second-tier edge-cloud, where we optimize its use through proposed low-complexity algorithms, such as to achieve an energy and cost-efficient solution that guarantees the services' latency requirements. Due to the significant advantage of operating MEC in heterogeneous networks, we extend the scenario to a network of small-cells with the second-tier edge server being co-located within the macro-cell which can be reached through a wireless backhaul, where we optimize the macro-cell server use along with the other offloading parameters through a proposed customized algorithm based on the Successive Convex Approximation (SCA) technique. Then, given the UAVs' considerable ability in expanding the capabilities of cellular networks and MEC systems, we study the latency and reliability aware optimized positioning and use of UAV-mounted cloudlets for computation offloading through two planning and operational problems while considering tasks redundancy, and propose customized solutions for solving those problems. Finally, given the IRSs' ability to also enhance the channel conditions through the tuning of their passive reflecting elements, we extend the latency and reliability aware study to a scenario of an IRS-aided MEC system considering both a single-user and multi-user OFDMA cases, where we explore the optimized IRSs' use in order to reveal their role in reducing the UEs' offloading consumption energy and saving the network resources, through proposed customized solutions based on the SCA approach and the SDR technique

    Bowdoin Orient v.63, no.1-27 (1933-1934)

    Get PDF
    https://digitalcommons.bowdoin.edu/bowdoinorient-1930s/1003/thumbnail.jp

    New Perspectives in Health

    Get PDF
    Gut microbiota are an area recently targeted by modern biomedical research. In fact, during the last five years, there has been increasing evidence related to the role of gut microbiota as remarkable symbiotic partners critical for the maintenance of good health. Several factors cause alterations in gut microbiota which are, indeed, accompanied by alterations in the quality of health. Accordingly, gut microbiota dysbiosis has been related to increased susceptibilities to intestinal, cardiovascular, and nervous pathologies. In this manual, you will find the latest studies carried out in the field of microbiota. Overall, the contributions published in this Special Issue further strengthen the essential function of gut microbiota in health and in various diseases
    corecore