1,833 research outputs found

    Experimental Determination of Penetration Loss into Multi-Storey Buildings at 900 and 1800MHz

    Get PDF
    This study presents building pentration loss into and around multi-storey buildings at 900 and 1800MHz based on experimental data obtained through drive test, using Test Mobile System (TEMS) investigation tools. The received signal level was measured inside and outside three buildings; the Senate building of the University of Lagos (B1), Mike Adenuga Towers (B2) and the Sapetro Towers (B3) located in Victoria Island, Lagos Nigeria. The building penetration loss (BPL) was derived from measurements, and the average and standard deviations of the BPL were computed. Results showed that the average BPL of 17.0dB and 13.8dB obtained from building B1 at 900 and 1800MHz, respectively, are comparatively higher than those of buildings B2 and B3. The standard deviation of the BPL shows an increase from 5.2dB at 900MHz to 7.8dB at 1800MHz for building B1, whereas it fell drastically from 8.65dB at 900MHz to 1.40dB at 1800MHz for B2, and a similar behaviour in B1 is seen for building B3 where it rises sharply from 1.55dB at 900MHz to 6.55dB at 1800MHz. This is in agreement with the general trend of increasing penetration loss with increase in frequency except for building B2 where an anomaly is observed. In order to examine the correlation between the measured and the predicted BPL, cubic regression was used to fit a third order polynomial to the measured BPL. Overrall, the fitted models could find useful applications in the design of novel and robust BPL models for modern multi-floored buildings

    Radio frequency channel characterization for energy harvesting in factory environments

    Get PDF
    This thesis presents ambient energy data obtained from a measurement campaign carried out at an automobile plant. At the automobile plant, ambient light, ambient temperature and ambient radio frequency were measured during the day time over two days. The measurement results showed that ambient light generated the highest DC power. For plant and operation managers at the automobile plant, the measurement data can be used in system design considerations for future energy harvesting wireless sensor nodes at the plant. In addition, wideband measurements obtained from a machine workshop are presented in this thesis. The power delay profile of the wireless channel was obtained by using a frequency domain channel sounding technique. The measurements were compared with an equivalent ray tracing model in order to validate the suitability of the commercial propagation software used in this work. Furthermore, a novel technique for mathematically recreating the time dispersion created by factory inventory in a radio frequency channel is discussed. As a wireless receiver design parameter, delay spread characterizes the amplitude and phase response of the radio channel. In wireless sensor devices, this becomes paramount, as it determines the complexity of the receiver. In reality, it is sometimes difficult to obtain full detail floor plans of factories for deterministic modelling or carry out spot measurements during building construction. As a result, radio provision may be suboptimal. The method presented in this thesis is based on 3-D fractal geometry. By employing the fractal overlaying algorithm presented, metallic objects can be placed on a floor plan so as to obtain similar radio frequency channel effects. The environment created using the fractal approach was used to estimate the amount of energy a harvesting device can accumulate in a University machine workshop space

    Spectrum Utilisation and Management in Cognitive Radio Networks

    Get PDF
    • …
    corecore