31,600 research outputs found

    Path Quality Estimator for 802.15.4e TSCH Fast Deployment Tool

    Get PDF
    [EN] This paper introduces a novel quality estimator that uses different metrics to decide the best path towards the root in Wireless Sensor Networks. The different metrics are assessed at medium access control layer (MAC), under the IEEE 802.15.4 standard, and are used at network layer, enhancing the best path selection process done by the routing protocol, and at the application layer, enabling visual quality indicators in the nodes. This quality function is used during deployment stage; ensuring nodes are located optimally and nimbly. This mechanism will help WSN¿s adoption in Industrial Internet of Things applications.This work is supported by IVACE (Insituto Valenciano de Competitividad Empresarial) through FEDER funding (exp. IMDEEA/2017/103).Vera-Pérez, J.; Todoli Ferrandis, D.; Santonja Climent, S.; Silvestre-Blanes, J.; Sempere Paya, VM. (2018). Path Quality Estimator for 802.15.4e TSCH Fast Deployment Tool. Telfor Journal (Online). 10(1):2-7. https://doi.org/10.5937/telfor1801002VS27101O. Gaddour, A. Koubâa, S. Chaudhry, M. Tezeghdanti, R. Chaari and M. Abid, 'Simulation and Performance Evaluation of DAG Construction with RPL,' in IEEE Third International Conference on Communications and Networking (ComNet), pp. 1-8, 2012.;IETF, 'RFC 6552 - Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL),' 2012.;IETF, 'RFC 6719 - The Minimum Rank with Hysteresis Objective Function,' 2012.;N. Pradeska, Widyawan, W. Najib and S. S. Kusumawardani, 'Performance Analysis of Objective Function MRHOF and OF0 in Routing Protocol RPL IPv6 Over Low Power Wireless Personal Area Networks (6LoWPAN),' in 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 2016.;P. O. Kamgueu, E. Nataf, T. D. Ndié and O. Festor, 'Energy-based routing metric for RPL,' Doctoral dissertation, INRIA, 2013.;H.-S. Kim, J. Paek and S. Bahk, 'QU-RPL: Queue utilization based RPL for load balancing in large scale industrial applications,' in 12th Annual IEEE International Conference on Sensing, Communication and Networking (SECON), Seattle, WA, USA, 2015.;P. Gonizzi, R. Monica and G. Ferrari, 'Design and evaluation of a delay-efficient RPL routing metric,' in 9th International Wireless Communication and Mobile Computing Conference (IWCMC), Sardinia, Italy, 2013.;IETF, 'RFC 6551 - Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks,' 2012.;N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga, H. Youssef, C. A. Boano and M. Alves, 'Radio link quality estimation in wireless sensor networks: A survey,' ACM Transactions on Sensor Networks (TOSN), vol. 8 (4), 2012.;P. Karkazis, H. C. Leligou, L. Sarakis, T. Zahariadis, P. Trakadas, T. H. Velivassaki and C. Capsalis, 'Design of primary and composite routing metrics for RPL-compliant Wireless Sensor Networks,' in International Conference on Telecommunications and Multimedia (TEMU), Chania, Greece, 2012.;N. Baccour, A. Koubâa, H. Youssef, M. B. Jamâa, D. d. Rosário, M. Alves and L. B. Becker, 'F-LQE: A Fuzzy Link Quality Estimator for Wireless Sensor Networks,' in European Conference on Wireless Sensor Networks (EWSN), Coimbra, Portugal, 2010.;S. Rekik, N. Baccour, M. Jmaiel and K. Drira, 'Holistic link quality estimation-based routing metric for RPL networks in smart grids,' in IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016.;O. Gaddour, A. Koubaa, N. Baccour and M. Abid, 'OF-FL: QoSaware fuzzy logic objective function for the RPL routing protocol,' in 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Hammamet, Tunisia, 2014.;IETF, 'RFC 8180 - Minimal IPv6 over TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration,' 2017.;M. G. Amor, A. Koubâa, E. Tovar and M. Khalgui, 'Cyber-OF: An Adaptative Cyber-Physical Objective Function for Smart Cities Applications,' in 28th Euromicro Conference on Real-Time Systems (ECRTS), Toulouse, France, 2016.;J. Vera-Pérez, D. Todolí-Ferrandis, J. Silvestre-Blanes, S. SantonjaCliment and V. Sempere-Paya, 'Path quality estimator for wireless sensor networks fast deployment tool,' 2017 25th Telecommunication Forum (TELFOR), Belgrade, 2017, pp. 1-4.

    A Communication Monitor for Wireless Sensor Networks Based on Software Defined Radio

    Get PDF
    Link quality estimation of reliability-crucial wireless sensor networks (WSNs) is often limited by the observability and testability of single-chip radio transceivers. The estimation is often based on collection of packer-level statistics, including packet reception rate, or vendor-specific registers, such as CC2420's Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI). The speed or accuracy of such metrics limits the performance of reliability mechanisms built in wireless sensor networks. To improve link quality estimation in WSNs, we designed a powerful wireless communication monitor based on Software Defined Radio (SDR). We studied the relations between three implemented link quality metrics and packet reception rate under different channel conditions. Based on a comparison of the metrics' relative advantages, we proposed using a combination of them for fast and accurate estimation of a sensor network link

    Low Power, Low Delay: Opportunistic Routing meets Duty Cycling

    Get PDF
    Traditionally, routing in wireless sensor networks consists of two steps: First, the routing protocol selects a next hop, and, second, the MAC protocol waits for the intended destination to wake up and receive the data. This design makes it difficult to adapt to link dynamics and introduces delays while waiting for the next hop to wake up. In this paper we introduce ORW, a practical opportunistic routing scheme for wireless sensor networks. In a dutycycled setting, packets are addressed to sets of potential receivers and forwarded by the neighbor that wakes up first and successfully receives the packet. This reduces delay and energy consumption by utilizing all neighbors as potential forwarders. Furthermore, this increases resilience to wireless link dynamics by exploiting spatial diversity. Our results show that ORW reduces radio duty-cycles on average by 50% (up to 90% on individual nodes) and delays by 30% to 90% when compared to the state of the art

    On Link Estimation in Dense RPL Deployments

    Get PDF
    The Internet of Things vision foresees billions of devices to connect the physical world to the digital world. Sensing applications such as structural health monitoring, surveillance or smart buildings employ multi-hop wireless networks with high density to attain sufficient area coverage. Such applications need networking stacks and routing protocols that can scale with network size and density while remaining energy-efficient and lightweight. To this end, the IETF RoLL working group has designed the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL). This paper discusses the problems of link quality estimation and neighbor management policies when it comes to handling high densities. We implement and evaluate different neighbor management policies and link probing techniques in Contiki’s RPL implementation. We report on our experience with a 100-node testbed with average 40-degree density. We show the sensitivity of high density routing with respect to cache sizes and routing metric initialization. Finally, we devise guidelines for design and implementation of density-scalable routing protocols

    Partner selection in indoor-to-outdoor cooperative networks: an experimental study

    Full text link
    In this paper, we develop a partner selection protocol for enhancing the network lifetime in cooperative wireless networks. The case-study is the cooperative relayed transmission from fixed indoor nodes to a common outdoor access point. A stochastic bivariate model for the spatial distribution of the fading parameters that govern the link performance, namely the Rician K-factor and the path-loss, is proposed and validated by means of real channel measurements. The partner selection protocol is based on the real-time estimation of a function of these fading parameters, i.e., the coding gain. To reduce the complexity of the link quality assessment, a Bayesian approach is proposed that uses the site-specific bivariate model as a-priori information for the coding gain estimation. This link quality estimator allows network lifetime gains almost as if all K-factor values were known. Furthermore, it suits IEEE 802.15.4 compliant networks as it efficiently exploits the information acquired from the receiver signal strength indicator. Extensive numerical results highlight the trade-off between complexity, robustness to model mismatches and network lifetime performance. We show for instance that infrequent updates of the site-specific model through K-factor estimation over a subset of links are sufficient to at least double the network lifetime with respect to existing algorithms based on path loss information only.Comment: This work has been submitted to IEEE Journal on Selected Areas in Communications in August 201
    • …
    corecore