106 research outputs found

    Zero-Bias Deep Learning for Accurate Identification of Internet of Things (IoT) Devices

    Get PDF
    The Internet of Things (IoT) provides applications and services that would otherwise not be possible. However, the open nature of IoT makes it vulnerable to cybersecurity threats. Especially, identity spoofing attacks, where an adversary passively listens to the existing radio communications and then mimic the identity of legitimate devices to conduct malicious activities. Existing solutions employ cryptographic signatures to verify the trustworthiness of received information. In prevalent IoT, secret keys for cryptography can potentially be disclosed and disable the verification mechanism. Noncryptographic device verification is needed to ensure trustworthy IoT. In this article, we propose an enhanced deep learning framework for IoT device identification using physical-layer signals. Specifically, we enable our framework to report unseen IoT devices and introduce the zero-bias layer to deep neural networks to increase robustness and interpretability. We have evaluated the effectiveness of the proposed framework using real data from automatic dependent surveillance-broadcast (ADS-B), an application of IoT in aviation. The proposed framework has the potential to be applied to the accurate identification of IoT devices in a variety of IoT applications and services

    Real-Time Machine Learning for Quickest Detection

    Get PDF
    Safety-critical Cyber-Physical Systems (CPS) require real-time machine learning for control and decision making. One promising solution is to use deep learning to discover useful patterns for event detection from heterogeneous data. However, deep learning algorithms encounter challenges in CPS with assurability requirements: 1) Decision explainability, 2) Real-time and quickest event detection, and 3) Time-eficient incremental learning. To address these obstacles, I developed a real-time Machine Learning Framework for Quickest Detection (MLQD). To be specific, I first propose the zero-bias neural network, which removes decision bias and preferabilities from regular neural networks and provides an interpretable decision process. Second, I discover the latent space characteristic of the zero-bias neural network and the method to mathematically convert a Deep Neural Network (DNN) classifier into a performance-assured binary abnormality detector. In this way, I can seamlessly integrate the deep neural networks\u27 data processing capability with Quickest Detection (QD) and provide real-time sequential event detection paradigm. Thirdly, after discovering that a critical factor that impedes the incremental learning of neural networks is the concept interference (confusion) in latent space, and I prove that to minimize interference, the concept representation vectors (class fingerprints) within the latent space need to be organized orthogonally and I invent a new incremental learning strategy using the findings, I facilitate deep neural networks in the CPS to evolve eficiently without retraining. All my algorithms are evaluated on real-world applications, ADS-B (Automatic Dependent Surveillance Broadcasting) signal identification, and spoofing detection in the aviation communication system. Finally, I discuss the current trends in MLQD and conclude this dissertation by presenting the future research directions and applications. As a summary, the innovations of this dissertation are as follows: i) I propose the zerobias neural network, which provides transparent latent space characteristics, I apply it to solve the wireless device identification problem. ii) I discover and prove the orthogonal memory organization mechanism in artificial neural networks and apply this mechanism in time-efficient incremental learning. iii) I discover and mathematically prove the converging point theorem, with which we can predict the latent space topological characteristics and estimate the topological maturity of neural networks. iv) I bridge the gap between machine learning and quickest detection with assurable performance

    Signal fingerprinting and machine learning framework for UAV detection and identification.

    Get PDF
    Advancement in technology has led to creative and innovative inventions. One such invention includes unmanned aerial vehicles (UAVs). UAVs (also known as drones) are now an intrinsic part of our society because their application is becoming ubiquitous in every industry ranging from transportation and logistics to environmental monitoring among others. With the numerous benign applications of UAVs, their emergence has added a new dimension to privacy and security issues. There are little or no strict regulations on the people that can purchase or own a UAV. For this reason, nefarious actors can take advantage of these aircraft to intrude into restricted or private areas. A UAV detection and identification system is one of the ways of detecting and identifying the presence of a UAV in an area. UAV detection and identification systems employ different sensing techniques such as radio frequency (RF) signals, video, sounds, and thermal imaging for detecting an intruding UAV. Because of the passive nature (stealth) of RF sensing techniques, the ability to exploit RF sensing for identification of UAV flight mode (i.e., flying, hovering, videoing, etc.), and the capability to detect a UAV at beyond visual line-of-sight (BVLOS) or marginal line-of-sight makes RF sensing techniques promising for UAV detection and identification. More so, there is constant communication between a UAV and its ground station (i.e., flight controller). The RF signals emitting from a UAV or UAV flight controller can be exploited for UAV detection and identification. Hence, in this work, an RF-based UAV detection and identification system is proposed and investigated. In RF signal fingerprinting research, the transient and steady state of the RF signals can be used to extract a unique signature. The first part of this work is to use two different wavelet analytic transforms (i.e., continuous wavelet transform and wavelet scattering transform) to investigate and analyze the characteristics or impacts of using either state for UAV detection and identification. Coefficient-based and image-based signatures are proposed for each of the wavelet analysis transforms to detect and identify a UAV. One of the challenges of using RF sensing is that a UAV\u27s communication links operate at the industrial, scientific, and medical (ISM) band. Several devices such as Bluetooth and WiFi operate at the ISM band as well, so discriminating UAVs from other ISM devices is not a trivial task. A semi-supervised anomaly detection approach is explored and proposed in this research to differentiate UAVs from Bluetooth and WiFi devices. Both time-frequency analytical approaches and unsupervised deep neural network techniques (i.e., denoising autoencoder) are used differently for feature extraction. Finally, a hierarchical classification framework for UAV identification is proposed for the identification of the type of unmanned aerial system signal (UAV or UAV controller signal), the UAV model, and the operational mode of the UAV. This is a shift from a flat classification approach. The hierarchical learning approach provides a level-by-level classification that can be useful for identifying an intruding UAV. The proposed frameworks described here can be extended to the detection of rogue RF devices in an environment

    Indoor positioning with deep learning for mobile IoT systems

    Get PDF
    2022 Summer.Includes bibliographical references.The development of human-centric services with mobile devices in the era of the Internet of Things (IoT) has opened the possibility of merging indoor positioning technologies with various mobile applications to deliver stable and responsive indoor navigation and localization functionalities that can enhance user experience within increasingly complex indoor environments. But as GPS signals cannot easily penetrate modern building structures, it is challenging to build reliable indoor positioning systems (IPS). Currently, Wi-Fi sensing based indoor localization techniques are gaining in popularity as a means to build accurate IPS, benefiting from the prevalence of 802.11 family. Wi-Fi fingerprinting based indoor localization has shown remarkable performance over geometric mapping in complex indoor environments by taking advantage of pattern matching techniques. Today, the two main information extracted from Wi-Fi signals to form fingerprints are Received Signal Strength Index (RSSI) and Channel State Information (CSI) with Orthogonal Frequency-Division Multiplexing (OFDM) modulation, where the former can provide the average localization error around or under 10 meters but has low hardware and software requirements, while the latter has a higher chance to estimate locations with ultra-low distance errors but demands more resources from chipsets, firmware/software environments, etc. This thesis makes two novel contributions towards realizing viable IPS on mobile devices using RSSI and CSI information, and deep machine learning based fingerprinting. Due to the larger quantity of data and more sophisticated signal patterns to create fingerprints in complex indoor environments, conventional machine learning algorithms that need carefully engineered features suffer from the challenges of identifying features from very high dimensional data. Hence, the abilities of approximation functions generated from conventional machine learning models to estimate locations are limited. Deep machine learning based approaches can overcome these challenges to realize scalable feature pattern matching approaches such as fingerprinting. However, deep machine learning models generally require considerable memory footprint, and this creates a significant issue on resource-constrained devices such as mobile IoT devices, wearables, smartphones, etc. Developing efficient deep learning models is a critical factor to lower energy consumption for resource intensive mobile IoT devices and accelerate inference time. To address this issue, our first contribution proposes the CHISEL framework, which is a Wi-Fi RSSI- based IPS that incorporates data augmentation and compression-aware two-dimensional convolutional neural networks (2D CAECNNs) with different pruning and quantization options. The proposed model compression techniques help reduce model deployment overheads in the IPS. Unlike RSSI, CSI takes advantages of multipath signals to potentially help indoor localization algorithms achieve a higher level of localization accuracy. The compensations for magnitude attenuation and phase shifting during wireless propagation generate different patterns that can be utilized to define the uniqueness of different locations of signal reception. However, all prior work in this domain constrains the experimental space to relatively small-sized and rectangular rooms where the complexity of building interiors and dynamic noise from human activities, etc., are seldom considered. As part of our second contribution, we propose an end-to-end deep learning based framework called CSILoc for Wi-Fi CSI-based IPS on mobile IoT devices. The framework includes CSI data collection, clustering, denoising, calibration and classification, and is the first study to verify the feasibility to use CSI for floor level indoor localization with minimal knowledge of Wi-Fi access points (APs), thus avoiding security concerns during the offline data collection process

    Class-Incremental Learning for Wireless Device Identification in IoT

    Get PDF
    Deep Learning (DL) has been utilized pervasively in the Internet of Things (IoT). One typical application of DL in IoT is device identification from wireless signals, namely Noncryptographic Device Identification (NDI). However, learning components in NDI systems have to evolve to adapt to operational variations, such a paradigm is termed as Incremental Learning (IL). Various IL algorithms have been proposed and many of them require dedicated space to store the increasing amount of historical data, and therefore, they are not suitable for IoT or mobile applications. However, conventional IL schemes can not provide satisfying performance when historical data are not available. In this paper, we address the IL problem in NDI from a new perspective, firstly, we provide a new metric to measure the degree of topological maturity of DNN models from the degree of conflict of class-specific fingerprints. We discover that an important cause for performance degradation in IL enabled NDI is owing to the conflict of devices’ fingerprints. Second, we also show that the conventional IL schemes can lead to low topological maturity of DNN models in NDI systems. Thirdly, we propose a new Channel Separation Enabled Incremental Learning (CSIL) scheme without using historical data, in which our strategy can automatically separate devices’ fingerprints in different learning stages and avoid potential conflict. Finally, We evaluated the effectiveness of the proposed framework using real data from ADS-B (Automatic Dependent Surveillance-Broadcast), an application of IoT in aviation. The proposed framework has the potential to be applied to accurate identification of IoT devices in a variety of IoT applications and services

    Unsupervised Clustering of RF-Fingerprinting Features Derived from Deep Learning Based Recognition Models

    Get PDF
    RF-Fingerprinting is focus of machine learning research which aims to characterize wireless communication devices based on their physical hardware characteristics. It is a promising avenue for improving wireless communication security in the PHY layer. The bulk of research presented to date in this field is focused on the development of features and classifiers using both traditional supervised machine learning models as well as deep learning. This research aims to expand on existing RF-Fingerprinting work by approaching the problem through the lens of an unsupervised clustering problem. To that end this research proposes a deep learning model and training methodology to extract features from IEEE 802.11a/g preamble waveforms to enhance performance with various clustering algorithms. The model architecture presented takes the form of convolutional autoencoder with an objective function that combines both autoencoder reconstruction loss as well as triplet loss to learn feature encodings. These features were then clustered using the K-means, DBSCAN, and Mean Shift clustering algorithms
    • …
    corecore