16,333 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Towards Opportunistic Data Dissemination in Mobile Phone Sensor Networks

    Get PDF
    Recently, there has been a growing interest within the research community in developing opportunistic routing protocols. Many schemes have been proposed; however, they differ greatly in assumptions and in type of network for which they are evaluated. As a result, researchers have an ambiguous understanding of how these schemes compare against each other in their specific applications. To investigate the performance of existing opportunistic routing algorithms in realistic scenarios, we propose a heterogeneous architecture including fixed infrastructure, mobile infrastructure, and mobile nodes. The proposed architecture focuses on how to utilize the available, low cost short-range radios of mobile phones for data gathering and dissemination. We also propose a new realistic mobility model and metrics. Existing opportunistic routing protocols are simulated and evaluated with the proposed heterogeneous architecture, mobility models, and transmission interfaces. Results show that some protocols suffer long time-to-live (TTL), while others suffer short TTL. We show that heterogeneous sensor network architectures need heterogeneous routing algorithms, such as a combination of Epidemic and Spray and Wait

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    A new QoS routing algorithm based on self-organizing maps for wireless sensor networks

    Get PDF
    For the past ten years, many authors have focused their investigations in wireless sensor networks. Different researching issues have been extensively developed: power consumption, MAC protocols, self-organizing network algorithms, data-aggregation schemes, routing protocols, QoS management, etc. Due to the constraints on data processing and power consumption, the use of artificial intelligence has been historically discarded. However, in some special scenarios the features of neural networks are appropriate to develop complex tasks such as path discovery. In this paper, we explore and compare the performance of two very well known routing paradigms, directed diffusion and Energy- Aware Routing, with our routing algorithm, named SIR, which has the novelty of being based on the introduction of neural networks in every sensor node. Extensive simulations over our wireless sensor network simulator, OLIMPO, have been carried out to study the efficiency of the introduction of neural networks. A comparison of the results obtained with every routing protocol is analyzed. This paper attempts to encourage the use of artificial intelligence techniques in wireless sensor nodes
    corecore