897 research outputs found

    Service Capacity Enhanced Task Offloading and Resource Allocation in Multi-Server Edge Computing Environment

    Full text link
    An edge computing environment features multiple edge servers and multiple service clients. In this environment, mobile service providers can offload client-side computation tasks from service clients' devices onto edge servers to reduce service latency and power consumption experienced by the clients. A critical issue that has yet to be properly addressed is how to allocate edge computing resources to achieve two optimization objectives: 1) minimize the service cost measured by the service latency and the power consumption experienced by service clients; and 2) maximize the service capacity measured by the number of service clients that can offload their computation tasks in the long term. This paper formulates this long-term problem as a stochastic optimization problem and solves it with an online algorithm based on Lyapunov optimization. This NP-hard problem is decomposed into three sub-problems, which are then solved with a suite of techniques. The experimental results show that our approach significantly outperforms two baseline approaches.Comment: This paper has been accepted by Early Submission Phase of ICWS201

    Energy-Efficient Joint Offloading and Wireless Resource Allocation Strategy in Multi-MEC Server Systems

    Full text link
    Mobile edge computing (MEC) is an emerging paradigm that mobile devices can offload the computation-intensive or latency-critical tasks to the nearby MEC servers, so as to save energy and extend battery life. Unlike the cloud server, MEC server is a small-scale data center deployed at a wireless access point, thus it is highly sensitive to both radio and computing resource. In this paper, we consider an Orthogonal Frequency-Division Multiplexing Access (OFDMA) based multi-user and multi-MEC-server system, where the task offloading strategies and wireless resources allocation are jointly investigated. Aiming at minimizing the total energy consumption, we propose the joint offloading and resource allocation strategy for latency-critical applications. Through the bi-level optimization approach, the original NP-hard problem is decoupled into the lower-level problem seeking for the allocation of power and subcarrier and the upper-level task offloading problem. Simulation results show that the proposed algorithm achieves excellent performance in energy saving and successful offloading probability (SOP) in comparison with conventional schemes.Comment: 6 pages, 5 figures, to appear in IEEE ICC 2018, May 20-2

    Aqua Computing: Coupling Computing and Communications

    Full text link
    The authors introduce a new vision for providing computing services for connected devices. It is based on the key concept that future computing resources will be coupled with communication resources, for enhancing user experience of the connected users, and also for optimising resources in the providers' infrastructures. Such coupling is achieved by Joint/Cooperative resource allocation algorithms, by integrating computing and communication services and by integrating hardware in networks. Such type of computing, by which computing services are not delivered independently but dependent of networking services, is named Aqua Computing. The authors see Aqua Computing as a novel approach for delivering computing resources to end devices, where computing power of the devices are enhanced automatically once they are connected to an Aqua Computing enabled network. The process of resource coupling is named computation dissolving. Then, an Aqua Computing architecture is proposed for mobile edge networks, in which computing and wireless networking resources are allocated jointly or cooperatively by a Mobile Cloud Controller, for the benefit of the end-users and/or for the benefit of the service providers. Finally, a working prototype of the system is shown and the gathered results show the performance of the Aqua Computing prototype.Comment: A shorter version of this paper will be submitted to an IEEE magazin

    Mobile Edge Computation Offloading Using Game Theory and Reinforcement Learning

    Full text link
    Due to the ever-increasing popularity of resource-hungry and delay-constrained mobile applications, the computation and storage capabilities of remote cloud has partially migrated towards the mobile edge, giving rise to the concept known as Mobile Edge Computing (MEC). While MEC servers enjoy the close proximity to the end-users to provide services at reduced latency and lower energy costs, they suffer from limitations in computational and radio resources, which calls for fair efficient resource management in the MEC servers. The problem is however challenging due to the ultra-high density, distributed nature, and intrinsic randomness of next generation wireless networks. In this article, we focus on the application of game theory and reinforcement learning for efficient distributed resource management in MEC, in particular, for computation offloading. We briefly review the cutting-edge research and discuss future challenges. Furthermore, we develop a game-theoretical model for energy-efficient distributed edge server activation and study several learning techniques. Numerical results are provided to illustrate the performance of these distributed learning techniques. Also, open research issues in the context of resource management in MEC servers are discussed

    Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence

    Full text link
    Along with the rapid developments in communication technologies and the surge in the use of mobile devices, a brand-new computation paradigm, Edge Computing, is surging in popularity. Meanwhile, Artificial Intelligence (AI) applications are thriving with the breakthroughs in deep learning and the many improvements in hardware architectures. Billions of data bytes, generated at the network edge, put massive demands on data processing and structural optimization. Thus, there exists a strong demand to integrate Edge Computing and AI, which gives birth to Edge Intelligence. In this paper, we divide Edge Intelligence into AI for edge (Intelligence-enabled Edge Computing) and AI on edge (Artificial Intelligence on Edge). The former focuses on providing more optimal solutions to key problems in Edge Computing with the help of popular and effective AI technologies while the latter studies how to carry out the entire process of building AI models, i.e., model training and inference, on the edge. This paper provides insights into this new inter-disciplinary field from a broader perspective. It discusses the core concepts and the research road-map, which should provide the necessary background for potential future research initiatives in Edge Intelligence.Comment: 13 pages, 3 figure

    Intelligent networking with Mobile Edge Computing: Vision and Challenges for Dynamic Network Scheduling

    Full text link
    Mobile edge computing (MEC) has been considered as a promising technique for internet of things (IoT). By deploying edge servers at the proximity of devices, it is expected to provide services and process data at a relatively low delay by intelligent networking. However, the vast edge servers may face great challenges in terms of cooperation and resource allocation. Furthermore, intelligent networking requires online implementation in distributed mode. In such kinds of systems, the network scheduling can not follow any previously known rule due to complicated application environment. Then statistical learning rises up as a promising technique for network scheduling, where edges dynamically learn environmental elements with cooperations. It is expected such learning based methods may relieve deficiency of model limitations, which enhance their practical use in dynamic network scheduling. In this paper, we investigate the vision and challenges of the intelligent IoT networking with mobile edge computing. From the systematic viewpoint, some major research opportunities are enumerated with respect to statistical learning

    The edge cloud: A holistic view of communication, computation and caching

    Get PDF
    The evolution of communication networks shows a clear shift of focus from just improving the communications aspects to enabling new important services, from Industry 4.0 to automated driving, virtual/augmented reality, Internet of Things (IoT), and so on. This trend is evident in the roadmap planned for the deployment of the fifth generation (5G) communication networks. This ambitious goal requires a paradigm shift towards a vision that looks at communication, computation and caching (3C) resources as three components of a single holistic system. The further step is to bring these 3C resources closer to the mobile user, at the edge of the network, to enable very low latency and high reliability services. The scope of this chapter is to show that signal processing techniques can play a key role in this new vision. In particular, we motivate the joint optimization of 3C resources. Then we show how graph-based representations can play a key role in building effective learning methods and devising innovative resource allocation techniques.Comment: to appear in the book "Cooperative and Graph Signal Pocessing: Principles and Applications", P. Djuric and C. Richard Eds., Academic Press, Elsevier, 201

    Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges and Opportunities

    Full text link
    The ever-increasing mobile data demands have posed significant challenges in the current radio access networks, while the emerging computation-heavy Internet of things (IoT) applications with varied requirements demand more flexibility and resilience from the cloud/edge computing architecture. In this article, to address the issues, we propose a novel air-ground integrated mobile edge network (AGMEN), where UAVs are flexibly deployed and scheduled, and assist the communication, caching, and computing of the edge network. In specific, we present the detailed architecture of AGMEN, and investigate the benefits and application scenarios of drone-cells, and UAV-assisted edge caching and computing. Furthermore, the challenging issues in AGMEN are discussed, and potential research directions are highlighted.Comment: Accepted by IEEE Communications Magazine. 5 figure

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Mobile Edge Intelligence and Computing for the Internet of Vehicles

    Full text link
    The Internet of Vehicles (IoV) is an emerging paradigm, driven by recent advancements in vehicular communications and networking. Advances in research can now provide reliable communication links between vehicles, via vehicle-to-vehicle communications, and between vehicles and roadside infrastructures, via vehicle-to-infrastructure communications. Meanwhile, the capability and intelligence of vehicles are being rapidly enhanced, and this will have the potential of supporting a plethora of new exciting applications, which will integrate fully autonomous vehicles, the Internet of Things (IoT), and the environment. These trends will bring about an era of intelligent IoV, which will heavily depend upon communications, computing, and data analytics technologies. To store and process the massive amount of data generated by intelligent IoV, onboard processing and Cloud computing will not be sufficient, due to resource/power constraints and communication overhead/latency, respectively. By deploying storage and computing resources at the wireless network edge, e.g., radio access points, the edge information system (EIS), including edge caching, edge computing, and edge AI, will play a key role in the future intelligent IoV. Such system will provide not only low-latency content delivery and computation services, but also localized data acquisition, aggregation and processing. This article surveys the latest development in EIS for intelligent IoV. Key design issues, methodologies and hardware platforms are introduced. In particular, typical use cases for intelligent vehicles are illustrated, including edge-assisted perception, mapping, and localization. In addition, various open research problems are identified.Comment: 18 pages, 6 figures, submitted to Proceedings of the IEE
    corecore