22 research outputs found

    BENCHOP - The BENCHmarking project in Option Pricing

    Get PDF
    The aim of the BENCHOP project is to provide the finance community with a common suite of benchmark problems for option pricing. We provide a detailed description of the six benchmark problems together with methods to compute reference solutions. We have implemented fifteen different numerical methods for these problems, and compare their relative performance. All implementations are available on line and can be used for future development and comparison

    Efficient computation of partition of unity interpolants through a block-based searching technique

    Full text link
    In this paper we propose a new efficient interpolation tool, extremely suitable for large scattered data sets. The partition of unity method is used and performed by blending Radial Basis Functions (RBFs) as local approximants and using locally supported weight functions. In particular we present a new space-partitioning data structure based on a partition of the underlying generic domain in blocks. This approach allows us to examine only a reduced number of blocks in the search process of the nearest neighbour points, leading to an optimized searching routine. Complexity analysis and numerical experiments in two- and three-dimensional interpolation support our findings. Some applications to geometric modelling are also considered. Moreover, the associated software package written in \textsc{Matlab} is here discussed and made available to the scientific community

    Localized kernel-based approximation for pricing financial options under regime switching jump diffusion model

    Get PDF
    In this paper, we consider European and American option pricing problems under regime switching jump diffusion models which are formulated as a system of partial integro-differential equations (PIDEs) with fixed and free boundaries. For free boundary problem arising in pricing American option, we use operator splitting method to deal with early exercise feature of American option. For developing a numerical technique we employ localized radial basis function generated finite difference (RBF-FD) approximation to overcome the ill-conditioning and high density issues of discretized matrices. The proposed method leads to linear systems with tridiagonal and diagonal dominant matrices. Also, in this paper the convergence and consistency of the proposed method are discussed. Numerical examples presented in the last section illustrate the robustness and practical performance of the proposed algorithm for pricing European and American options. Published by Elsevier B.V. on behalf of IMACS
    corecore