10 research outputs found

    Local maximizers of generalized convex vector-valued functions

    Get PDF
    Any local maximizer of an explicitly quasiconvex real-valued function is actually a global minimizer, if it belongs to the intrinsic core of the function's domain. In this paper we show that similar properties hold for componentwise explicitly quasiconvex vector-valued functions, with respect to the concepts of ideal, strong and weak optimality. We illustrate these results in the particular framework of linear fractional multicriteria optimization problems.Any local maximizer of an explicitly quasiconvex real-valued function is actually a global minimizer, if it belongs to the intrinsic core of the function's domain. In this paper we show that similar properties hold for componentwise explicitly quasiconvex vector-valued functions, with respect to the concepts of ideal, strong and weak optimality. We illustrate these results in the particular framework of linear fractional multicriteria optimization problems

    Quelques thèmes en l'analyse variationnelle et optimisation

    Get PDF
    In this thesis, we first study the theory of [gamma]-limits. Besides some basic properties of [gamma]-limits,expressions of sequential [gamma]-limits generalizing classical results of Greco are presented. These limits also give us a clue to a unified classification of derivatives and tangent cones. Next, we develop an approach to generalized differentiation theory. This allows us to deal with several generalized derivatives of set-valued maps defined directly in primal spaces, such as variational sets, radial sets, radial derivatives, Studniarski derivatives. Finally, we study calculus rules of these derivatives and applications related to optimality conditions and sensitivity analysis.Dans cette thèse, j’étudie d’abord la théorie des [gamma]-limites. En dehors de quelques propriétés fondamentales des [gamma]-limites, les expressions de [gamma]-limites séquentielles généralisant des résultats de Greco sont présentées. En outre, ces limites nous donnent aussi une idée d’une classification unifiée de la tangence et la différentiation généralisée. Ensuite, je développe une approche des théories de la différentiation généralisée. Cela permet de traiter plusieurs dérivées généralisées des multi-applications définies directement dans l’espace primal, tels que des ensembles variationnels,des ensembles radiaux, des dérivées radiales, des dérivées de Studniarski. Finalement, j’étudie les règles de calcul de ces dérivées et les applications liées aux conditions d’optimalité et à l’analyse de sensibilité

    Optimality conditions for nonsmooth optimization problems via generalised derivatives

    Get PDF
    Aquatic plants are integral components of freshwater ecosystems and provide essential ecosystem services. However, when invasive species establish in new aquatic environments, there are few natural checks and balances to inhibit their growth and spread. Overabundant aquatic vegetation can harm aquatic systems if left unchecked and negatively impact on agricultural productivity, social amenity and biodiversity values. Prevention and early intervention are recognised as the most cost effective means to manage invasive species that pose a biosecurity risk. This thesis contributes to the development of effective management strategies for one of the world’s most invasive aquatic plant species, known as alligator weed (Alternanthera philoxeroides (Mart.) Griseb.). It focusses on developing management strategies in an early stage of invasion, in order to achieve extirpation of this species from catchments and waterways. Developing effective detection and surveillance strategies are required for invasive aquatic plants, as a key impediment to achieving extirpation is the ability to detect infestations, so that control strategies can be enacted. This thesis investigates the effectiveness of aerial surveillance for detection of alligator weed at different spatial scales, using high altitude aerial imagery (orthophotos) and unmanned aerial vehicle (UAV) technology. An examination of the growth rate of alligator weed in Victoria, Australia, over a five year period, demonstrates the effective use of orthophotos to detect and monitor large infestations of aquatic alligator weed. The efficacy of unmanned aerial vehicle technology, including the use of automated algorithms, to detect patches of alligator weed growing in waterways is evaluated against current detection techniques. Effective management of invasive aquatic plants targeted for extirpation requires the coupling of effective detection and control efforts to prevent reproduction. To date, development of control strategies for aquatic alligator weed has been limited to evaluating the efficacy of short-term control at a local scale without regard to the effects of management strategies on dispersal of propagules throughout catchments. This thesis determines that viable alligator weed stem fragments are produced following herbicide application, which comprises extirpation efforts. This thesis has gone further than current practice in that it has evaluated the efficacy of current and novel control techniques, in both laboratory and field trials and has developed methods to manage viable fragment production post-herbicide application, to limit dispersal throughout catchments. In this respect, the application of the herbicides glyphosate, metsulfuron-methyl and imazapyr, and their effectiveness when incorporating surfactant systems and plant growth regulators, have been evaluated in field and laboratory studies to optimise control techniques for aquatic alligator weed. Results have shown that our approaches, when used in an early stage of invasion, are capable of eliminating patches of alligator weed in two to three years. Integral to the research is an experiment to determine the effect of herbicide treatments on the production of alligator weed stem fragments and their subsequent viability. Further investigation to determine the usefulness of commercially available plant growth regulators (PGRs) to reduce the number of viable propagules produced by alligator weed post-herbicide application was found to be ineffective. This thesis also evaluates the impact of herbicides and surfactant systems, on all key alligator weed response metrics in aquatic environments including; above ground biomass, below ground biomass and viable stem fragmentation. No previous studies have looked simultaneously at these three important measures for determining the efficacy of a particular control regime, and we have determined that this is essential for effective management of aquatic alligator weed in an early stage of invasion. The thesis has underscored the notion that development of more effective management strategies, based upon experimental trials, will result in an increased likelihood of eradicating invasive aquatic plants that pose a biosecurity risk, and thus move toward the mitigation of the threat that high-risk species pose to aquatic ecosystems. PLEASE NOTE: Portions of the full text have been removed due to copyright restrictions.Doctor of Philosoph

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore