10 research outputs found

    Scattering of Ocean Surfaces in Microwave Remote Sensing by Numerical Solutions of Maxwell Equations

    Full text link
    Sea-surface scattering has long been studied using various analytical methods. These analytical methods include the two scale method (TSM), the small-slope approximation (SSA), the small-perturbation method (SPM), the Advanced Integral Equation Method (AIEM), and the Geometrical/Physical Optics (GO/PO) method. These analytical methods rely on making approximations and assumptions in the modelling process. Some of these assumptions undermine their applicability in a wide range of situations. The input for analytical methods are usually the ocean spectrum. In real implementations, there are 2 sources of uncertainty in such approaches: (1) the analytical methods have a limited range of applicability to the surface scattering problem; the approximations made in these methods are questionable and (2) the various ocean spectra are another source of uncertainty. We earlier applied a numerical method in 3-dimensions (NMM3D) to the scattering problem of soil surfaces. Through comparison with measured data, we established the accuracy and applicability of NMM3D. We see a drastic increase of ocean remote sensing applications in recent years. It is thus feasible to extend NMM3D to the sea-surface scattering problem. Compared to soil, sea water has a much higher permittivity, e.g., 75+61i at L-band. The large permittivity dictates the need for using a much denser mesh for the sea surface. In addition, the root mean square (rms) height of the sea surface is large under moderate to high ocean wind speeds, which requires a large simulation area to account for the influence of long scale wave like gravity waves. Compared to the two-scale model commonly used for the ocean scattering problem, NMM3D does not need an ad-hoc split wavenumber in the ocean spectrum. Combined with a fast computational algorithm, it was shown that NMM3D can produce accurate results compared to measured data like the Aquarius missions. TSM could also match well with Aquarius provided with a pre-selected splitting wavenumber. But it was observed that the result of TSM changes with different splitting wavenumbers. It is seen that TSM is fairly heuristic while NMM3D can serve as an exact method for the scattering problem. On the other hand, through our study of NMM3D, we found that with a fine grid, the final impedance matrix converges slowly and also it becomes hard to perform simulations for a large surface. This has provoked us to (1) solve low convergence problem for a dense mesh and (2) resolve difficulties in simulations of large surfaces. Inspired by the existing impedance boundary condition (IBC) method, we proposed a neighborhood impedance boundary condition (NIBC) method to solve the slow convergence problem caused by the dense grid. Different from IBC where the surface electric field and the surface magnetic field are related locally, NIBC relates the surface electric field to the magnetic field within a preselected bandwidth BW. Through numerical simulations, we found that the condition number can be reduced using NIBC. Errors of NIBC are controllable through changing BW. We applied NIBC to various wind speeds and surface types and found NIBC to be quite accurate when surface currents only suffer an error norm of less than 1%.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145797/1/qiaot_1.pd

    Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    Full text link
    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell’s equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell’s equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5~2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green’s function, we have developed the method of broadband Green’s function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We’ve applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green’s functions including periodic scatterers.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135885/1/srtan_1.pd

    Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    Full text link
    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell’s equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell’s equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5~2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green’s function, we have developed the method of broadband Green’s function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We’ve applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green’s functions including periodic scatterers.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137141/1/srtan_1.pd

    Three-Dimensional Electromagnetic Scattering from Layered Media with Rough Interfaces for Subsurface Radar Remote Sensing

    Full text link
    The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with/without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational e±ciency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91459/1/xduan_1.pd

    Electromagnetic Modeling for Radar Remote Sensing of Snow-Covered Terrain

    Full text link
    This thesis investigates the radar remote sensing of snow-covered terrain for estimation of snow equivalent water on global scale. The importance and impact of this research stems from the fact that water from snowmelt is the major source of water for inland cities and agriculture during summer. This effort is focused on developing a physics-based model for snow and a fully coherent polarimetric scattering model for snow above ground. Both the physical model and the forward polarimetric scattering model present a significant improvement compared to the existing models for snowpack. Computer-generated snow media are constructed using 3-D spatial exponential correlation functions, along with Lineal-Path functions that serve to preserve the connectivity of the snow particles. A fully-coherent model is presented through the use of the Statistical S-matrix Wave Propagation in Spectral-Domain (SSWaP-SD) technique. The SSWaP-SD depends on the discretization of the medium into thin slabs. Several realizations of a thin snow slab are solved numerically to form the statistics of the scattering matrix representing such a thin snow layer. For each thin slab of the snow-pack, a corresponding polarimetric N-port (representing different directions of scattering) S-matrix is generated. These S-matrices are cascaded using the SSWaP-SD method to calculate the total forward and backward bistatic scattered fields in a fully coherent way. The SSWaP-SD, in conjunction with a Method of Moments (MoM) code based on the Discrete-Dipole Approximation (DDA), is chosen to leverage both the time-efficient computations of the DDA and the full-coherency of the SSWaP-SD method, simultaneously. In addition to the MoM-DDA, a Finite Element Method (FEM) based on commercial software is used for cross-comparison and validation. The simulation results of the backscattering from an arbitrary thick snow layer are presented and validated with measurements. The underlying rough ground surface response is then estimated through both an analytical technique based on the Physical Optics (PO) method and a numerical solver based on MoM using a commercial full-wave solver. Finally, the complete response is then calculated by cascading the S-matrices representing the snow and the rough surface responses. The simulation results of the backscattering are presented using a Monte-Carlo process, which show very good agreement with measurements.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/167972/1/mzaky_1.pd

    Passive Microwave Remote Sensing of Snow Layers Using Novel Wideband Radiometer Systems and RFI Mitigation

    Full text link
    Climate change can reduce the availability of water resources in many regions, and it will affect agriculture, industry, and energy supply. Snowpack monitoring is important in water resource management as well as flood and avalanche protection. The rapid melting process due to global warming changes the snowpacks' annual statistics, including the extent, and the snow water equivalent (SWE) of seasonal snowpacks, which results in non-stationary annual statistics that should be monitored in nearly daily intervals. The development of advanced radiometric sensors capable of accurately measuring the snowpack thickness and SWE is needed for the long-term study of the snowpack parameters' statistical changes. Passive microwave radiometry provides a means for measuring the microwave emission from a scene of snow and ice. A Wideband Autocorrelation Radiometer (ac{WiBAR}) operating from 1-2~GHz measures spontaneous emission from snowpack at long wavelengths where the scattering is minimized, but the snow layer coherent effects are preserved. By using a wide bandwidth to measure the spacing between frequencies of constructive and destructive interference of the emission from the soil under the snow, it can reveal the microwave travel time through the snow, and thus the snow depth. However, narrowband radio frequency interference (RFI) in the WiBAR's frequency of operations reduces the ability of the WiBAR to measure the thickness accurately. In addition, the current WiBAR system is a frequency domain, FD-WiBAR, system that uses a field-portable spectrum analyzer to collect the data and suffers from high data acquisition time which limits its applications for spaceborne and airborne technologies. In this work, a novel frequency tunable microwave comb filter is proposed for RFI mitigation. The frequency response of the proposed filter has a pattern with many frequencies band-pass and band rejection that preserves the frequency span while reducing the RFI. Moreover, we demonstrate time-domain WiBAR, TD-WiBAR, which presented as an alternative method for FD-WiBAR, and is capable of providing faster data acquisition. A new time-domain calibration is also developed for TD-WiBAR and evaluated with the frequency domain calibration. To validate the TD-WiBAR method, simulated laboratory measurements are performed using a microwave scene simulator circuit. Then the WiBAR instrument is enhanced with the proposed comb filter and showed the RFI mitigation in time-domain mode on an instrument bench test. Furthermore, we analyze the effects of an above snow vegetation layer on brightness temperature spectra, particularly the possible decay of wave coherence arising from volume scattering in the vegetation canopy. In our analysis, the snow layer is assumed to be flat, and its upward emission and surface reflectivities are modeled by a fully coherent model, while an incoherent radiative transfer model describes the volume scattering from the vegetation layer. We proposed a unified framework of vegetation scattering using radiative transfer (RT) theory for passive and active remote sensing of vegetated land surfaces, especially those associated with moderate-to-large vegetation water contents (VWCs), e.g., forest field. The framework allows for modeling passive and active microwave signatures of the vegetated field with the same physical parameters describing the vegetation structure. The proposed model is validated with the passive and active L-band sensor (PALS) acquired in SMAPVEX12 measurements in 2012, demonstrating the applicability of this model.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169653/1/maryamsa_1.pd

    Modeling microwave emission from snow covered soil

    Get PDF
    Il ciclo idrologico rappresenta l’insieme di tutti i fenomeni legati alla circolazione e alla conservazione dell’acqua sulla Terra. Il monitoraggio su scala globale dei fattori che concorrono a produrre e modificare tale ciclo (umidità del terreno, copertura vegetale, estensione e caratteristiche del manto nevoso) risulta di estrema importanza per lo studio del clima e dei cambiamenti globali. Inoltre, l’osservazione sistematica di queste grandezze è importante per prevedere condizioni di rischio da alluvioni, frane e valanghe come pure fare stime delle risorse idriche. In questo contesto Il telerilevamento da satellite gioca un ruolo fondamentale per le sue caratteristiche di osservazioni continuative di tutto globo terrestre. I sensori a microonde permettono poi di effettuare misure indipendentemente dall’illuminazione solare e anche in condizioni meteorologiche avverse. I processi idrologici, ed in particolare quelli della criosfera (la porzione di superficie terrestre in cui l’acqua è presente in forma solida), sono fra quelli che meglio si possono investigare analizzando la radiazione elettromagnetica emessa o diffusa. Mediante l’utilizzo di modelli elettromagnetici che permettono di simulare l’emissione e lo scattering da superfici naturali è possibile interpretare le misure elettromagnetiche ed effettuare l’estrazione di quelle grandezze che caratterizzano i suoli e la loro copertura. In questo lavoro di dottorato si è affrontato il problema della modellistica a microonde dei terreni coperti da neve, sia asciutta che umida. Dopo aver preso in considerazione i modelli analitici maggiormente utilizzati per simulare diffusione ed emissione a microonde dei suoli nudi e coperti da neve si è proceduto allo sviluppo e implementazione di due modelli di emissività. Il primo, basato sulla teoria delle fluttuazioni forti, è atto a descrivere il comportamento di un manto nevoso umido. Il secondo, basato sull’accoppiamento del modello di scattering superficiale AIEM (Advanced Integral Equation Method) con la teoria del trasferimento radiativo nei mezzi densi, è volto allo studio di uno strato di neve asciutta sovrastante un suolo rugoso. Tali modelli tengono conto degli effetti coerenti presenti nell’emissione del manto nevoso e non inclusi nella teoria del trasporto radiativo classico. Entrambi i codici sono stati validati con datasets numerici e sperimentali in parte derivati da archivi ed in parte ottenuti nel contesto di questo lavoro che ha previsto quindi anche una fase sperimentale. Quest’ultima è stata condotta con misure radiometriche multifrequenza su un’area di test situata sulle Alpi orientali. Le simulazioni ottenute con questi modelli e le conseguenti analisi hanno permesso di individuare la sensibilità della temperatura di brillanza ai parametri di interesse (spessore, equivalente in acqua e umidità del manto nevoso) in funzione di diverse configurazioni osservative (frequenza, polarizzazione ed angolo di incidenza). Questo ha consentito di migliorare la comprensione dei meccanismi di emissione dalle superfici innevate e di individuare le migliori condizioni osservative per un sistema di telerilevamento terrestre

    Modélisation de l’émission micro-onde hivernale en forêt boréale canadienne

    Get PDF
    La caractérisation du couvert nival en forêt boréale est un élément important pour la compréhension des régimes climatiques et hydrologiques. Depuis plusieurs années, l’utilisation des micro-ondes passives est étudiée pour l’estimation de l’équivalent en eau de la neige (SWE : Snow Water Equivalent) à partir de capteurs satellitaires. Les algorithmes empiriques traditionnels étant limités en forêt boréale, le couplage d’un modèle de transfert radiatif (MTR) micro-onde passive (qui prend en compte les contributions du sol, de la neige, de la végétation et de l’atmosphère) avec un modèle de neige pour l’inversion du SWE semble une avenue prometteuse. La thèse vise donc à coupler un MTR avec le schéma de surface du modèle climatique canadien (CLASS) dans une perspective d’application opérationnelle pour les estimations de SWE à partir de données satellitaires micro-onde à 10.7, 19 et 37 GHz. Dans ce contexte, certains aspects centraux du MTR, dont l’effet de la taille des grains ainsi que la contribution de la végétation sont développés et quantifiés. Le premier aspect étudié dans la thèse concerne l’adaptation du modèle d’émission micro-onde passive DMRT-ML (Dense media radiative transfer theory – multi layer) pour l’intégration d’une nouvelle métrique représentant la taille des grains (surface spécifique des grains de neige: SSA). L’étude basée sur des mesures radiométriques et de neige in situ, montre la pertinence de l’utilisation de la SSA dans DMRT-ML et permet d’analyser le sens physique de l’adaptation nécessaire pour amener le modèle à simuler les températures de brillance (T[indice inférieur B) de la neige avec une erreur quadratique moyenne minimale de l’ordre de 13 K. Dans un contexte du couplage entre le modèle de neige de CLASS et DMRT-ML, un modèle d’évolution de la SSA est ensuite implémenté dans CLASS. Les SSA simulées par le module développé sont validées avec des données in situ basées sur la réflectance de la neige dans l’infrarouge à courte longueur d’onde pour différents types d’environnement. Au niveau de la contribution de la végétation, le modèle γ-ω a été étudié à partir de différentes bases de données (satellite, avion et au sol) en forêt boréale dense. L’étude montre l’importance de la considération de la diffusion (ω) pour l’estimation de l’émission de la végétation, paramètre auparavant généralement négligé aux hautes fréquences. Ensuite, des relations entre les transmissivités et certains paramètres structuraux de la forêt, dont l’indice de surface foliaire (LAI), ont été établies pour des forêts boréales en été. Des valeurs d’albédo de diffusion (ω) ainsi que les paramètres définissant la réflectivité du sol (QH) en forêt boréale ont aussi été inversées. Finalement, les simulations de T [indice inférieur] B issues du couplage du MTR (DMRT-ML, modèle γ-ω, et modèle atmosphérique) avec CLASS (dont les SSA simulées) ont été comparées avec les données AMSR-E sur une série temporelle continue de sept ans. Les premières comparaisons montrent une différence entre les paramètres de végétation (γ-ω) d’été et d’hiver, ainsi qu’une importante contribution des croûtes de glace dans la neige au signal. Les simulations du modèle ajusté montrent une bonne correspondance avec les observations d’AMSR-E (de l’ordre de 3 à 7 K selon la fréquence et la polarisation). Des tests de sensibilité montrent par contre une faible sensibilité du MTR/CLASS au SWE pour des forêts denses et des couverts nivaux épais. Le MTR-CLASS développé pourrait permettre l’assimilation de températures de brillance satellitaires en forêt boréale dans des systèmes opérationnels pour l’amélioration de paramètres de surface, dont la neige, dans les modèles météorologiques et climatiques

    Analyse de la modélisation de l'émission multi-fréquences micro-onde des sols et de la neige, incluant les croutes de glace à l'aide du modèle Microwave Emission Model of Layered Snowpacks (MEMLS).

    Get PDF
    Résumé : L'étude du couvert nival est essentielle afin de mieux comprendre les processus climatiques et hydrologiques. De plus, avec les changements climatiques observés dans l'hémisphère nord, des événements de dégel-regel ou de pluie hivernale sont de plus en plus courants et produisent des croutes de glace dans le couvert nival affectant les moeurs des communautés arctiques en plus de menacer la survie de la faune arctique. La télédétection micro-ondes passives (MOP) démontre un grand potentiel de caractérisation du couvert nival. Toutefois, a fin de bien comprendre les mesures satellitaires, une modélisation adéquate du signal est nécessaire. L'objectif principal de cette thèse est d'analyser le transfert radiatif (TR) MOP des sols, de la neige et de la glace a fin de mieux caractériser les propriétés géophysiques du couvert nival par télédétection. De plus, un indice de détection des croutes de glace par télédétection MOP a été développé. Pour ce faire, le modèle Microwave Emission Model of Layered Snowpacks (MEMLS) a été étudié et calibré afin de minimiser les erreurs des températures de brillance simulées en présences de croutes de glace. La première amélioration faite à la modélisation du TR MOP de la neige a été la caractérisation de la taille des grains de neige. Deux nouveaux instruments, utilisant la réflectance dans le proche infrarouge, ont été développés afin de mesurer la surface spécifique de la neige (SSA). Il a été démontré que la SSA est un paramètre plus précis et plus objectif pour caractériser la taille des grains de neige. Les deux instruments ont démontré une incertitude de 10% sur la mesure de la SSA. De plus, la SSA a été calibré pour la modélisation MOP a n de minimiser l'erreur sur la modélisation de la température de brillance. Il a été démontré qu'un facteur multiplicatif [phi] = 1.3 appliqué au paramètre de taille des grains de neige dans MEMLS, paramètre dérivé de la SSA, est nécessaire afin de minimiser l'erreur des simulations. La deuxième amélioration apportée à la modélisation du TR MOP a été l'estimation de l'émission du sol. Des mesures radiométriques MOP in-situ ainsi que des profils de températures de sols organiques arctiques gelés ont été acquis et caractérisés a fin de simuler l'émission MOP de ces sols. Des constantes diélectriques effectives à 10.7, 19 et 37 GHz ainsi qu'une rugosité de surface effective des sols ont été déterminés pour simuler l'émission des sols. Une erreur quadratique moyenne (RMSE) de 4.65 K entre les simulations et les mesures MOP a été obtenue. Suite à la calibration du TR MOP du sol et de la neige, un module de TR de la glace a été implémenté dans MEMLS. Avec ce nouveau module, il a été possible de démontré que l'approximation de Born améliorée, déjà implémenté dans MEMLS, pouvait être utilisé pour simuler des croutes de glace pure à condition que la couche de glace soit caractérisée par une densité de 917 kg m[indice supérieur _3] et une taille des grains de neige de 0 mm. Il a aussi été démontré que, pour des sites caractérisés par des croutes de glace, les températures de brillances simulées des couverts de neige avec des croutes de glace ayant les propriétés mesurées in-situ (RMSE=11.3 K), avaient une erreur similaire aux températures de brillances simulées des couverts de neige pour des sites n'ayant pas de croutes de glace (RMSE=11.5 K). Avec le modèle MEMLS validé pour la simulation du TR MOP du sol, de la neige et de la glace, un indice de détection des croutes de glace par télédétection MOP a été développé. Il a été démontré que le ratio de polarisation (PR) était très affecté par la présence de croutes de glace dans le couvert de neige. Avec des simulations des PR à 10.7, 19 et 37 GHz sur des sites mesurés à Churchill (Manitoba, Canada), il a été possible de déterminer des seuils entre la moyenne hivernale des PR et les valeurs des PR mesurés indiquant la présence de croutes de glace. Ces seuils ont été appliqués sur une série temporelle de PR de 33 hivers d'un pixel du Nunavik (Québec, Canada) où les conditions de sols étaient similaires à ceux observés à Churchill. Plusieurs croutes de glace ont été détectées depuis 1995 et les mêmes événements entre 2002 et 2009 que (Roy, 2014) ont été détectés. Avec une validation in-situ, il serait possible de confirmer ces événements de croutes de glace mais (Roy, 2014) a démontré que ces événements ne pouvaient être expliqués que par la présence de croutes de glace dans le couvert de neige. Ces mêmes seuils sur les PR ont été appliqués sur un pixel de l'Île Banks (Territoires du Nord-Ouest, Canada). L'événement répertorié par (Grenfell et Putkonen, 2008) a été détecté. Plusieurs autres événements de croutes de glace ont été détectés dans les années 1990 et 2000 avec ces seuils. Tous ces événements ont suivi une période où les températures de l'air étaient près ou supérieures au point de congélation et sont rapidement retombées sous le point de congélation. Les températures de l'air peuvent être utilisées pour confirmer la possibilité de présence de croutes de glace mais seul la validation in-situ peut définitivement confirmer la présence de ces croutes.Abstract : Snow cover studies are essential to better understand climatic and hydrologic processes. With recent climate change observed in the northern hemisphere, more frequent rain-on-snow and meltrefreeze events have been reported, which affect the habits of the northern comunities and the survival of arctique wildlife. Passive microwave remote sensing has proven to be a great tool to characterize the state of snow cover. Nonetheless, proper modeling of the microwave signal is needed in order to understand how the parameters of the snowpack affect the measured signal. The main objective of this study is to analyze the soil, snow and ice radiative transfer in order to better characterize snow cover properties and develop an ice lens detection index with satellite passive microwave brightness temperatures. To do so, the passive microwave radiative transfer modeling of the Microwave Emission Model of Layered Snowpacks (MEMLS) was improved in order to minimize the errors on the brightness temperature simulations in the presence of ice lenses. The first improvement to passive microwave radiative transfer modeling of snow made was the snow grain size parameterization. Two new instruments, based on short wave infrared reflectance to measure the snow specific surface area (SSA) were developed. This parameter was shown to be a more accurate and objective to characterize snow grain size. The instruments showed an uncertainty of 10% to measure the SSA of snow. Also, the SSA of snow was calibrated for passive microwave modeling in order to reduce the errors on the simulated brightness temperatures. It was showed that a correction factor of φ = 1.3 needed to be applied to the grain size parameter of MEMLS, obtain through the SSA measurements, to minimize the simulation error. The second improvement to passive microwave radiative transfer modeling was the estimation of passive microwave soil emission. In-situ microwave measurements and physical temperature profiles of frozen organic arctic soils were acquired and characterized to improve the modeling of the soil emission. Effective permittivities at 10.7, 19 and 37 GHz and effective surface roughness were determined for this type of soil and the soil brightness temperature simulations were obtain with a minimal root mean square error (RMSE) of 4.65K. With the snow grain size and soil contributions to the emitted brightness temperature optimized, it was then possible to implement a passive microwave radiative transfer module of ice into MEMLS. With this module, it was possible to demonstrate that the improved Born approximation already implemented in MEMLS was equivalent to simulating a pure ice lens when the density of the layer was set to 917 kg m−3 and the grain size to 0 mm. This study also showed that by simulating ice lenses within the snow with there measured properties, the RMSE of the simulations (RMSE= 11.3 K) was similar to the RMSE for simulations of snowpacks where no ice lenses were measured (only snow, RMSE= 11.5 K). With the validated MEMLS model for snowpacks with ice lenses, an ice index was created. It is shown here that the polarization ratio (PR) was strongly affected by the presence of ice lenses within the snowpack. With simulations of the PR at 10.7, 19 and 37 GHz from measured snowpack properties in Chucrhill (Manitoba, Canada), thresholds between the measured PR and the mean winter PR were determined to detect the presence of ice within the snowpack. These thresholds were applied to a timeseries of nearly 34 years for a pixel in Nunavik (Quebec, Canada) where the soil surface is similar to that of the Churchill site. Many ice lenses are detected since 1995 with these thresholds and the same events as Roy (2014) were detected. With in-situ validation, it would be possible to confirm the precision of these thresholds but Roy (2014) showed that these events can not be explained by anything else than the presence of an ice layer within the snowpack. The same thresholds were applied to a pixel on Banks island (North-West Territories, Canada). The 2003 event that was reported by Grenfell et Putkonen (2008) was detected by the thresholds. Other events in the years 1990 and 2000’s were detected with these thresholds. These events all follow periods where the air temperature were warm and were followed by a quick drop in air temperature which could be used to validate the presence of ice layer within the snowpack. Nonetheless, without in-situ validation, these events can not be confirmed

    Télédétection micro-onde de surfaces enneigées en milieu arctique : étude des processus de surface de la calotte glaciaire Barnes, Nunavut, Canada

    Get PDF
    Résumé : La région de l'archipel canadien, située en Arctique, connaît actuellement d'importants changements climatiques, se traduisant notamment par une augmentation des températures, une réduction de l'étendue de la banquise marine et du couvert nival terrestre ou encore une perte de masse significative des calottes glaciaires disséminées sur les îles de l'archipel. Parmi ces calottes glaciaires, la calotte Barnes, située en Terre de Baffin, ne fait pas exception comme le montrent les observations satellitaires qui témoignent d'une importante perte de masse ainsi que d'une régression de ses marges, sur les dernières décennies. Bien que les calottes glaciaires de l'archipel canadien ne représentent que quelques dizaines de centimètres d'élévation potentielle du niveau des mers, leur perte de masse est une composante non négligeable de l'augmentation actuelle du niveau des mers. Les projections climatiques laissent à penser que cette contribution pourrait rester significative dans les décennies à venir. Cependant, afin d'estimer les évolutions futures de ces calottes glaciaires et leur impact sur le climat ou le niveau des mers, il est nécessaire de caractériser les processus physiques tels que les modifications du bilan de masse de surface. Cette connaissance est actuellement très limitée du fait notamment du sous-échantillonnage des régions arctiques en terme de stations météorologiques permanentes. Une autre particularité de certaines calottes de l'archipel canadien, et de la calotte Barnes en particulier, est de présenter un processus d'accumulation de type glace surimposée, ce phénomène étant à prendre en compte dans l'étude des processus de surface. Pour pallier au manque de données, l'approche retenue a été d'utiliser des données de télédétection, qui offrent l'avantage d'une couverture spatiale globale ainsi qu'une bonne répétitivité temporelle. En particulier les données acquises dans le domaine des micro-ondes passives sont d'un grand intérêt pour l'étude de surfaces enneigées. En complément de ces données, la modélisation du manteau neigeux, tant d'un point de vue des processus physiques que de l'émission électromagnétique permet d'avoir accès à une compréhension fine des processus de surface tels que l'accumulation de la neige, la fonte, les transferts d'énergie et de matière à la surface, etc. Ces différents termes sont regroupés sous la notion de bilan de masse de surface. L'ensemble du travail présenté dans ce manuscrit a donc consisté à développer des outils permettant d'améliorer la connaissance des processus de surface des calottes glaciaires du type de celles que l'on rencontre dans l'archipel canadien, l'ensemble du développement méthodologique ayant été réalisé sur la calotte Barnes à l'aide du schéma de surface SURFEX-CROCUS pour la modélisation physique et du modèle DMRT-ML pour la partie électromagnétique. Les résultats ont tout d'abord permis de mettre en évidence une augmentation significative de la durée de fonte de surface sur la calotte Barnes (augmentation de plus de 30% sur la période 1979-2010), mais aussi sur la calotte Penny, elle aussi située en Terre de Baffin et qui présente la même tendance (augmentation de l'ordre de 50% sur la même période). Ensuite, l'application d'une chaîne de modélisation physique contrainte par diverses données de télédétection a permis de modéliser de manière réaliste le bilan de masse de surface de la dernière décennie, qui est de +6,8 cm/an en moyenne sur la zone sommitale de la calotte, qui est une zone d'accumulation. Enfin, des tests de sensibilité climatique sur ce bilan de masse ont permis de mettre en évidence un seuil à partir duquel cette calotte voit disparaître sa zone d'accumulation. Les modélisations effectuées suggèrent que ce seuil a de fortes chances d'être atteint très prochainement, pour une augmentation de température moyenne inférieure à 1°C, ce qui aurait pour conséquence une accélération de la perte de masse de la calotte. // Abstract : Significant climate change is curently monitored in the Arctic, and especially in the region of the canadian arctic archipellago. This climate warming leads to recession of seaice extent and seasonnal snow cover, and also to large mass loss of the archipellago’s ice caps. One of the most southern ice cap, the Barnes Ice Cap, located on the Baffin Island, is no exception to significant mass loss and margins recession as satellite observations exhibited over the last decades. Despite the relative low sea level potential of the small ice caps located in the canadian arctic achipellago in regards to major ice sheets, Antarctica and Greenland, their contribution to the current sea level rise is significant. Climate projections show that this contribution could accelerate significant over the next decades. However, to estimate the future evolution of these ice caps and their impact on climate or sea level rise, a better characterisation of the surface processes such as the evolution of the surface mass balance is needed. This knowledge is currently very limited, mainly due to the sparse covering of automatic weather stations or in-situ measurements over the Arctic. Furthermore, several ice caps, among with the Barnes Ice Cap, present a superimposed ice accumulation area which particularities have to be taken into account in the surface processes studies. Given the lack of in-situ data, the approach choosen in this work is to use remote sensing data, that have the advantage to offer a good spatial and temporal coverage. In particular, passive microwave data are very suitable for snowy surfaces studies. To complement these data, physical and electromagnetic snowpack modeling provide a fine characterisation of surface processes such as snow accumulation. The whole work presented in this manuscript thus consisted in developping specific tools to improve the understanding of surface processes of small arctic ice caps. This methodological development was performed and applied on the Barnes Ice Cap using the surface scheme SURFEX-CROCUS and the electromagnetic model DMRT-ML. First results highlight a significant increase in surface melt duration over the past 3 decades on the Barnes Ice Cap (increase of more than 30% over 1979-2010 period). A similar trend is also monitored over the Penny Ice Cap, located in the south part of the Baffin Island (increase of more than 50% over the same period). Then, the surface mass balance over the last decade was modeled by using a physical based modeling chain constrained by remote sensing data. The results give a mean net accumulation of +6,8 cm y−1 on the summit area of the ice cap. Finaly, sensitivity tests, performed to investigate the climatic sensitivity of the surface mass balance, highlight a threshold effect that may lead to a complete disapearence of the accumulation area of the Barnes Ice Cap. With a temperature increase less than 1°C, modeling results suggest it is likely that the threshold will be reached rapidly leading to an increase in mass loss from the ice cap
    corecore