3,761 research outputs found

    SAR-Based Vibration Estimation Using the Discrete Fractional Fourier Transform

    Get PDF
    A vibration estimation method for synthetic aperture radar (SAR) is presented based on a novel application of the discrete fractional Fourier transform (DFRFT). Small vibrations of ground targets introduce phase modulation in the SAR returned signals. With standard preprocessing of the returned signals, followed by the application of the DFRFT, the time-varying accelerations, frequencies, and displacements associated with vibrating objects can be extracted by successively estimating the quasi-instantaneous chirp rate in the phase-modulated signal in each subaperture. The performance of the proposed method is investigated quantitatively, and the measurable vibration frequencies and displacements are determined. Simulation results show that the proposed method can successfully estimate a two-component vibration at practical signal-to-noise levels. Two airborne experiments were also conducted using the Lynx SAR system in conjunction with vibrating ground test targets. The experiments demonstrated the correct estimation of a 1-Hz vibration with an amplitude of 1.5 cm and a 5-Hz vibration with an amplitude of 1.5 mm

    On the usage of GRECOSAR: an orbital polarimetric SAR simulator of complex targets for vessel classification studies

    Get PDF
    This paper presents a synthetic aperture radar (SAR) simulator that is able to generate polarimetric SAR (POLSAR) and polarimetric inverse SAR data of complex targets. It solves the electromagnetic problem via high-frequency approximations, such as physical optics and the physical theory of diffraction, with notable computational efficiency. In principle, any orbital monostatic sensor working at any band, resolution, and operating mode can be modeled. To make simulations more realistic, the target’s bearing and speed are considered, and for the particular case of vessels, even the translational and rotational movements induced by the sea state. All these capabilities make the simulator a powerful tool for supplying large amounts of data with precise scenario information and for testing future sensor configurations. In this paper, the usefulness of the simulator on vessel classification studies is assessed. Several simulated polarimetric images are presented to analyze the potentialities of coherent target decompositions for classifying complex geometries, thus basing an operational algorithm. The limitations highlighted by the results suggest that other approaches, like POLSAR interferometry, should be explored.Peer Reviewe

    On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies

    Get PDF
    This paper presents a synthetic aperture radar (SAR) simulator that is able to generate polarimetric SAR (POLSAR) and polarimetric inverse SAR data of complex targets. It solves the electromagnetic problem via high-frequency approximations, such as physical optics and the physical theory of diffraction, with notable computational efficiency. In principle, any orbital monostatic sensor working at any band, resolution, and operating mode can be modeled. To make simulations more realistic, the target’s bearing and speed are considered, and for the particular case of vessels, even the translational and rotational movements induced by the sea state. All these capabilities make the simulator a powerful tool for supplying large amounts of data with precise scenario information and for testing future sensor configurations. In this paper, the usefulness of the simulator on vessel classification studies is assessed. Several simulated polarimetric images are presented to analyze the potentialities of coherent target decompositions for classifying complex geometries, thus basing an operational algorithm. The limitations highlighted by the results suggest that other approaches, like POLSAR interferometry, should be explored.Peer Reviewe

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR

    Phase History Decomposition for Efficient Scatterer Classification in SAR Imagery

    Get PDF
    A new theory and algorithm for scatterer classification in SAR imagery is presented. The automated classification process is operationally efficient compared to existing image segmentation methods requiring human supervision. The algorithm reconstructs coarse resolution subimages from subdomains of the SAR phase history. It analyzes local peaks in the subimages to determine locations and geometric shapes of scatterers in the scene. Scatterer locations are indicated by the presence of a stable peak in all subimages for a given subaperture, while scatterer shapes are indicated by changes in pixel intensity. A new multi-peak model is developed from physical models of electromagnetic scattering to predict how pixel intensities behave for different scatterer shapes. The algorithm uses a least squares classifier to match observed pixel behavior to the model. Classification accuracy improves with increasing fractional bandwidth and is subject to the high-frequency and wide-aperture approximations of the multi-peak model. For superior computational efficiency, an integrated fast SAR imaging technique is developed to combine the coarse resolution subimages into a final SAR image having fine resolution. Finally, classification results are overlaid on the SAR image so that analysts can deduce the significance of the scatterer shape information within the image context

    Advanced high-order nonlinear chirp scaling algorithm for high-resolution wide-swath spaceborne SAR

    Get PDF
    Spaceborne Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technology that can provide high-resolution images of the Earth’s surface on a global scale. For future SAR systems, one of the key capabilities is to acquire images with both high-resolution and wide-swath. In parallel to the evolution of SAR sensors, more precise range models, and effective imaging algorithms are required. Due to the significant azimuth-variance of the echo signal in High-Resolution Wide-Swath (HRWS) SAR, two challenges have been faced in conventional imaging algorithms. The first challenge is constructing a precise range model of the whole scene and the second one is to develop an effective imaging algorithm since existing ones fail to process high-resolution and wide azimuth swath SAR data effectively. In this paper, an advanced high-order nonlinear chirp scaling (A-HNLCS) algorithm for HRWS SAR is proposed. First, a novel second-order equivalent squint range model (SOESRM) is developed to describe the range history of the whole scene, by introducing a quadratic curve to fit the deviation of the azimuth FM rate. Second, a corresponding algorithm is derived, where the azimuth-variance of the echo signal is solved by azimuth equalizing processing and accurate focusing is achieved through a high-order nonlinear chirp scaling algorithm. As a result, the whole scene can be accurately focused through one single imaging processing. Simulations are provided to validate the proposed range model and imaging algorithm

    Fractional Focusing and the Chirp Scaling Algorithm With Real Synthetic Aperture Radar Data

    Get PDF
    abstract: For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it does not require interpolation, and it can be used on both stripmap and spotlight SAR systems. Another transform that can be used to enhance the processing of SAR image formation is the fractional Fourier transform (FRFT). This transform has been recently introduced to the signal processing community, and it has shown many promising applications in the realm of SAR signal processing, specifically because of its close association to the Wigner distribution and ambiguity function. The objective of this work is to improve the application of the FRFT in order to enhance the implementation of the CSA for SAR processing. This will be achieved by processing real phase-history data from the RADARSAT-1 satellite, a multi-mode SAR platform operating in the C-band, providing imagery with resolution between 8 and 100 meters at incidence angles of 10 through 59 degrees. The phase-history data will be processed into imagery using the conventional chirp scaling algorithm. The results will then be compared using a new implementation of the CSA based on the use of the FRFT, combined with traditional SAR focusing techniques, to enhance the algorithm's focusing ability, thereby increasing the peak-to-sidelobe ratio of the focused targets. The FRFT can also be used to provide focusing enhancements at extended ranges.Dissertation/ThesisM.S. Electrical Engineering 201

    Performance of Scattering Matrix Decomposition and Color Spaces for Synthetic Aperture Radar Imagery

    Get PDF
    Polarimetrc Synthetic Aperture Radar (SAR) has been shown to be a powerful tool in remote sensing because uses up to four simultaneous measurements giving additional degrees of freedom for processing. Typically, polarization decomposition techniques are applied to the polarization-dependent data to form colorful imagery that is easy for operators systems to interpret. Yet, the presumption is that the SAR system operates with maximum bandwidth which requires extensive processing for near- or real-time application. In this research, color space selection is investigated when processing sparse polarimetric SAR data as in the case of the publicly available \Gotcha Volumetric SAR Data Set, Version 1:0 . To improve information quality in resultant color imagery, three scattering matrix decompositions were investigated (linear, Pauli and Krogager) using two common color spaces (RGB, CMY) to determine the best combination for accurate feature extraction. A mathematical model is presented for each decomposition technique and color space to the Cramer-Rao lower bound (CRLB) and quantify the performance bounds from an estimation perspective for given SAR system and processing parameters. After a deep literature review in color science, the mathematical model for color spaces was not able to be computed together with the mathematical model for decomposition techniques. The color spaces used for this research were functions of variables that are out of the scope of electrical engineering research and include factors such as the way humans sense color, environment influences in the color stimulus and device technical characteristics used to display the SAR image. Hence, SAR imagery was computed for specific combinations of decomposition technique and color space and allow the reader to gain an abstract view of the performance differences
    corecore