506 research outputs found

    Deep Learning Techniques in Radar Emitter Identification

    Get PDF
    In the field of electronic warfare (EW), one of the crucial roles of electronic intelligence is the identification of radar signals. In an operational environment, it is very essential to identify radar emitters whether friend or foe so that appropriate radar countermeasures can be taken against them. With the electromagnetic environment becoming increasingly complex and the diversity of signal features, radar emitter identification with high recognition accuracy has become a significantly challenging task. Traditional radar identification methods have shown some limitations in this complex electromagnetic scenario. Several radar classification and identification methods based on artificial neural networks have emerged with the emergence of artificial neural networks, notably deep learning approaches. Machine learning and deep learning algorithms are now frequently utilized to extract various types of information from radar signals more accurately and robustly. This paper illustrates the use of Deep Neural Networks (DNN) in radar applications for emitter classification and identification. Since deep learning approaches are capable of accurately classifying complicated patterns in radar signals, they have demonstrated significant promise for identifying radar emitters. By offering a thorough literature analysis of deep learning-based methodologies, the study intends to assist researchers and practitioners in better understanding the application of deep learning techniques to challenges related to the classification and identification of radar emitters. The study demonstrates that DNN can be used successfully in applications for radar classification and identification.   &nbsp

    Modulation recognition of low-SNR UAV radar signals based on bispectral slices and GA-BP neural network

    Get PDF
    In this paper, we address the challenge of low recognition rates in existing methods for radar signals from unmanned aerial vehicles (UAV) with low signal-to-noise ratios (SNRs). To overcome this challenge, we propose the utilization of the bispectral slice approach for accurate recognition of complex UAV radar signals. Our approach involves extracting the bispectral diagonal slice and the maximum bispectral amplitude horizontal slice from the bispectrum amplitude spectrum of the received UAV radar signal. These slices serve as the basis for subsequent identification by calculating characteristic parameters such as convexity, box dimension, and sparseness. To accomplish the recognition task, we employ a GA-BP neural network. The significant variations observed in the bispectral slices of different signals, along with their robustness against Gaussian noise, contribute to the high separability and stability of the extracted bispectral convexity, bispectral box dimension, and bispectral sparseness. Through simulations involving five radar signals, our proposed method demonstrates superior performance. Remarkably, even under challenging conditions with an SNR as low as −3 dB, the recognition accuracy for the five different radar signals exceeds 90%. Our research aims to enhance the understanding and application of modulation recognition techniques for UAV radar signals, particularly in scenarios with low SNRs

    Radar intra–pulse signal modulation classification with contrastive learning

    Get PDF
    The existing research on deep learning for radar signal intra–pulse modulation classification is mainly based on supervised leaning techniques, which performance mainly relies on a large number of labeled samples. To overcome this limitation, a self–supervised leaning framework, contrastive learning (CL), combined with the convolutional neural network (CNN) and focal loss function is proposed, called CL––CNN. A two–stage training strategy is adopted by CL–CNN. In the first stage, the model is pretrained using abundant unlabeled time–frequency images, and data augmentation is used to introduce positive–pair and negative–pair samples for self–supervised learning. In the second stage, the pretrained model is fine–tuned for classification, which only uses a small number of labeled time–frequency images. The simulation results demonstrate that CL–CNN outperforms the other deep models and traditional methods in scenarios with Gaussian noise and impulsive noise–affected signals, respectively. In addition, the proposed CL–CNN also shows good generalization ability, i.e., the model pretrained with Gaussian noise–affected samples also performs well on impulsive noise–affected samples

    A novel radar signal recognition method based on a deep restricted Boltzmann machine

    Get PDF
    Radar signal recognition is of great importance in the field of electronic intelligence reconnaissance. To deal with the problem of parameter complexity and agility of multi-function radars in radar signal recognition, a new model called radar signal recognition based on the deep restricted Boltzmann machine (RSRDRBM) is proposed to extract the feature parameters and recognize the radar emitter. This model is composed of multiple restricted Boltzmann machines. A bottom-up hierarchical unsupervised learning is used to obtain the initial parameters, and then the traditional back propagation (BP) algorithm is conducted to fine-tune the network parameters. Softmax algorithm is used to classify the results at last. Simulation and comparison experiments show that the proposed method has the ability of extracting the parameter features and recognizing the radar emitters, and it is characterized with strong robustness as well as highly correct recognition rate

    Joint 1D and 2D Neural Networks for Automatic Modulation Recognition

    Get PDF
    The digital communication and radar community has recently manifested more interest in using data-driven approaches for tasks such as modulation recognition, channel estimation and distortion correction. In this research we seek to apply an object detector for parameter estimation to perform waveform separation in the time and frequency domain prior to classification. This enables the full automation of detecting and classifying simultaneously occurring waveforms. We leverage a lD ResNet implemented by O\u27Shea et al. in [1] and the YOLO v3 object detector designed by Redmon et al. in [2]. We conducted an in depth study of the performance of these architectures and integrated the models to perform joint detection and classification. To our knowledge, the present research is the first to study and successfully combine a lD ResNet classifier and Yolo v3 object detector to fully automate the process of AMR for parameter estimation, pulse extraction and waveform classification for non-cooperative scenarios. The overall performance of the joint detector/ classifier is 90 at 10 dB signal to noise ratio for 24 digital and analog modulations
    corecore