13 research outputs found

    Research progress on geosynchronous synthetic aperture radar

    Get PDF
    Based on its ability to obtain two-dimensional (2D) high-resolution images in all-time and all-weather conditions, spaceborne synthetic aperture radar (SAR) has become an important remote sensing technique and the study of such systems has entered a period of vigorous development. Advanced imaging modes such as radar interferometry, tomography, and multi-static imaging, have been demonstrated. However, current in-orbit spaceborne SARs, which all operate in low Earth orbits, have relatively long revisit times ranging from several days to dozens of days, restricting their temporal sampling rate. Geosynchronous SAR (GEO SAR) is an active research area because it provides significant new capability, especially its much-improved temporal sampling. This paper reviews the research progress of GEO SAR technologies in detail. Two typical orbit schemes are presented, followed by the corresponding key issues, including system design, echo focusing, main disturbance factors, repeat-track interferometry, etc, inherent to these schemes. Both analysis and solution research of the above key issues are described. GEO SAR concepts involving multiple platforms are described, including the GEO SAR constellation, GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR, and formation flying GEO SAR (FF-GEO SAR). Due to the high potential of FF-GEO SAR for three-dimensional (3D) deformation retrieval and coherence-based SAR tomography (TomoSAR), we have recently carried out some research related to FF-GEO SAR. This research, which is also discussed in this paper, includes developing a formation design method and an improved TomoSAR processing algorithm. It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future

    Bistatic synthetitc aperture radar imaging based on Geostationatry transmitters and Ground-Based receivers

    Get PDF
    This thesis belongs to the remote sensing field, particularly on the Geostationary Synthetic Aperture Radar (SAR) imaging systems with on-ground receiver. These systems forms images taking the signals along the orbital track of one satellite while the receiver is placed on the Earth coherently processing the echoes received by the receiver. The study presented in this thesis is centered in an algorithm known as back projection algorithm that presents the main advantage that is possible to permanently acquire images from the same region thanks to the small motion of the platform with respect to the Earth. An introduction to all the important aspects of the GEOSAR mission is presented in order to let the reader known all the important information of why it is important to study the Synthetic Aperture Radars (SAR) mounted on geostationary satellite platforms. Moreover, an introduction to orbits, coordinates systems and Synthetic Aperture Radar (SAR) is essential in order to understand the algorithm developed in this thesis for obtaining SAR images from a geostationary orbit with the receiver placed on ground. So a detailed explanation of all this topics is developed during this thesis. The main section of this thesis presents the development of a back projection algorithm for a GEOSAR satellite with on ground receiver. Detailed explanations on how each block of the algorithm has been developed and which are the main functionalities of each block are explained and analysed. Finally, a test in order to prove that the algorithm works as expected has been performed in order to see if it is possible to obtain SAR images from a geostationary orbit using this geometry

    Geosynchronous synthetic aperture radar for Earth continuous observation missions

    Get PDF
    This thesis belongs to the field of remote sensing, particularly Synthetic Aperture Radar (SAR) systems from the space. These systems acquire the signals along the orbital track of one or more satellites where the transmitter and receiver are mounted, and coherently process the echoes in order to form the synthetic aperture. So, high resolution images can be obtained without using large arrays of antennas. The study presented in this thesis is centred in a novel concept in SAR, which is known as Geosynchronous SAR or GEOSAR, where the transmitter and/or receiver are placed in a platform in a geostationary orbit. In this case, the small relative motions between the satellite and the Earth surface are taken to get the necessary motion to form the synthetic aperture and focus the image. The main advantage of these systems with respect to the current technology (where LEO satellites with lower height are considered) is the possibility of permanently acquire images from the same region thanks to the small motion of the platform. Therefore, the different possibilities in the orbital design that offer this novel technology as well as the geometric resolutions obtained in the final image have been firstly studied. However, the use of geosynchronous satellites as illuminators results in slant ranges between 35.000-38.000 Km, which are much higher than the typical values obtained in LEOSAR, under 1.000 Km. Fortunately, the slow motion of the satellite makes possible large integration of pulses during minutes or even hours, reaching Signal-to-Noise Ratio (SNR) levels in the order of LEO acquisitions without using high transmitted power or large antennas. Moreover, such large integration times, increases the length of the synthetic aperture to get the desired geometric resolutions of the image (in the order of a few meters or kilometres depending on the application). On the other hand, the use of long integration time presents some drawbacks such as the scene targets decorrelation, atmospheric artefacts due to the refraction index variations in the tropospheric layer, transmitter and receiver clock jitter, clutter decorrelation or orbital positioning errors; which will affect the correct focusing of the image. For this reason, a detailed theoretical study is presented in the thesis in order to characterize and model these artefacts. Several simulations have been performed in order to see their effects on the final images. Some techniques and algorithms to track and remove these errors from the focused image are presented and the improvement of the final focused image is analysed. Additionally, the real data from a GB-SAR (Ground-Based SAR) have been reused to simulate a long integration time acquisition and see the effects in the image focusing as well as to check the performance of compensation algorithms in the final image. Finally, a ground receiver to reuse signals of opportunity from a broadcasting satellite have been designed and manufactured. This hardware is expected to be an important tool for experimental testing in future GEOSAR analysis.Aquesta tesi s'emmarca dins de l'àmbit de la teledetecció, en particular, en els sistemes coneguts com a radar d'obertura sintètica (SAR en anglès) des de l'espai. Aquests sistemes adquireixen senyal al llarg de l'òrbita d'un o més satèl·lits on estan situats el transmissor i el receptor, i processa els ecos de forma coherent per a formar l'obertura sintètica. D'aquesta manera es poden aconseguir imatge d'alta resolució sense la necessitat d'emprar un array d'antenes molt gran. El treball realitzat en aquest estudi es centra en un nou concepte dins del món SAR que consisteix en l'ús de satèl·lits en òrbita geostacionària per a l'adquisició d'imatges, sistemes coneguts com a Geosynchronous SAR o GEOSAR. En aquest cas, els petits moviments relatius dels satèl·lits respecte de la superfície terrestre s'empren per a aconseguir el desplaçament necessari per a formar l'obertura sintètica i així obtenir la imatge. El principal avantatge d'aquests sistemes respecte a la tecnologia actual (on s'utilitzen satèl·lits en orbites més baixes LEO) és la possibilitat d'adquirir imatges d'una mateixa zona de forma permanent gràcies als petits desplaçaments del satèl·lit. Així doncs, en aquesta tesi s'estudien les diferents possibilitats en el disseny orbital que ofereixen aquests sistemes així com les resolucions d'imatge que s'obtindrien. Tot i així, l'ús de satèl·lits en òrbita geoestacionària, resulta en una distància entre el transmissor/receptor i l'escena entre 35000-38000 Km, molt més gran que les distàncies típiques en els sistemes LEO per sota dels 1000 Km. Tot i així, el moviment lent de les plataformes geostacionàries fa possible la integració de polsos durant minuts o hores, arribant a nivells acceptables de relació senyal a soroll (SNR) sense necessitat d'utilitzar potències transmeses i antenes massa grans. A més a més, aquesta llarga integració també permet assolir unes longituds d'obertura sintètica adients per a arribar a resolucions d'imatge desitjades (de l'ordre de pocs metres o kilòmetres segons l'aplicació). Malgrat això, l'ús de temps d'integració llargs té una sèrie d'inconvenients com poden ser la decorrelació dels blancs de l'escena, l'aparició d'artefactes atmosfèrics deguts als canvis d'índex de refracció en la troposfera, derives dels rellotges del transmissor i receptor, decorrelació del clutter o errors en el posicionament orbital, que poden afectar la correcta focalització de la imatge. Així doncs, en la tesi s'ha fet un detallat estudi teòric d'aquests problemes per tal de modelitzar-los i posteriorment s'han realitzat diverses simulacions per veure els seus efectes en una imatge. Diverses tècniques per a compensar aquests errors i millorar la qualitat de la imatge també s'han estudiat al llarg de la tesi. Per altra banda, dades reals d'un GB-SAR (SAR en una base terrestre) s'han reutilitzat per adaptar-les a una possible adquisició de llarga durada i veure així de forma experimental com afecta la llarga integració en les imatges i com millora l'enfocament després d'aplicar els algoritmes de compensació. Per últim, en la tesi es presenta un sistema receptor terrestre per a poder realitzar un anàlisi experimental del cas GEOSAR utilitzant un il·luminador d'oportunitat. Els primers passos en el disseny i la fabricació del hardware també es presenten en aquesta tes

    Opportunistic radar imaging using a multichannel receiver

    Get PDF
    Bistatic Synthetic Aperture Radars have a physically separated transmitter and receiver where one or both are moving. Besides the advantages of reduced procurement and maintenance costs, the receiving system can sense passively while remaining covert which offers obvious tactical advantages. In this work, spaceborne monostatic SARs are used as emitters of opportunity with a stationary ground-based receiver. The imaging mode of SAR systems over land is usually a wide-swath mode such as ScanSAR or TOPSAR in which the antenna scans the area of interest in range to image a larger swath at the expense of degraded cross-range resolution compared to the conventional stripmap mode. In the bistatic geometry considered here, the signals from the sidelobes of the scanning beams illuminating the adjacent sub-swath are exploited to produce images with high cross-range resolution from data obtained from a SAR system operating in wide-swath mode. To achieve this, the SAR inverse problem is rigorously formulated and solved using a Maximum A Posteriori estimation method providing enhanced cross-range resolution compared to that obtained by classical burst-mode SAR processing. This dramatically increases the number of useful images that can be produced using emitters of opportunity. Signals from any radar satellite in the receiving band of the receiver can be used, thus further decreasing the revisit time of the area of interest. As a comparison, a compressive sensing-based method is critically analysed and proves more sensitive to off-grid targets and only suited to sparse scene. The novel SAR imaging method is demonstrated using simulated data and real measurements from C-band satellites such as RADARSAT-2 and ESA’s satellites ERS-2, ENVISAT and Sentinel-1A. In addition, this thesis analyses the main technological issues in bistatic SAR such as the azimuth-variant characteristic of bistatic data and the effect of imperfect synchronisation between the non-cooperative transmitter and the receiver

    Three Dimensional Bistatic Tomography Using HDTV

    Get PDF
    The thesis begins with a review of the principles of diffraction and reflection tomography; starting with the analytic solution to the inhomogeneous Helmholtz equation, after linearization by the Born approximation (the weak scatterer solution), and arriving at the Filtered Back Projection (Propagation) method of reconstruction. This is followed by a heuristic derivation more directly couched in the radar imaging context, without the rigor of the general inverse problem solution and more closely resembling an imaging turntable or inverse synthetic aperture radar. The heuristic derivation leads into the concept of the line integral and projections (the Radon Transform), followed by more general geometries where the plane wave approximation is invalid. We proceed next to study of the dependency of reconstruction on the space-frequency trajectory, combining the spatial aperture and waveform. Two and three dimensional apertures, monostatic and bistatic, fully and sparsely sampled and including partial apertures, with controlled waveforms (CW and pulsed, with and without modulation) define the filling of k-space and concomitant reconstruction performance. Theoretical developments in the first half of the thesis are applied to the specific example of bistatic tomographic imaging using High Definition Television (HDTV); the United States version of DVB-T. Modeling of the HDTV waveform using pseudonoise modulation to represent the hybrid 8VSB HDTV scheme and the move-stop-move approximation established the imaging potential, employing an idealized, isotropic 18 scatterer. As the move-stop-move approximation places a limitation on integration time (in cross correlation/pulse compression) due to transmitter/receiver motion, an exact solution for compensation of Doppler distortion is derived. The concept is tested with the assembly and flight test of a bistatic radar system employing software-defined radios (SDR). A three dimensional, bistatic collection aperture, exploiting an elevated commercial HDTV transmitter, is focused to demonstrate the principle. This work, to the best of our knowledge, represents a first in the formation of three dimensional images using bistatically-exploited television transmitters

    Design Options For Low Cost, Low Power Microsatellite Based SAR.

    Get PDF
    This research aims at providing a system design that reduces the mass and cost of spaceborne Synthetic Aperture Radar (SAR) missions by a factor of two compared to current (TecSAR - 300 kg, ~ £ 127 M) or planned (NovaSAR-S — 400 kg, ~ £ 50 M) mission. This would enable the cost of a SAR constellation to approach that of the current optical constellation such as Disaster Monitoring Constellation (DMC). This research has identified that the mission cost can be reduced significantly by: focusing on a narrow range of applications (forestry and disasters monitoring); ensuring the final design has a compact stowage volume, which facilitates a shared launch; and building the payload around available platforms, rather than the platform around the payload. The central idea of the research has been to operate the SAR at a low instantaneous power level—a practical proposition for a micro-satellite based SAR. The use of a simple parabolic reflector with a single horn at L-band means that a single, reliable and efficient Solid State Power Amplifier (SSPA) can be used to lower the overall system cost, and to minimise the impact on the spacecraft power system. A detailed analysis of basic pulsed (~ 5 - 10 % duty cycle) and Continuous Wave (CW) SAR (100 % duty cycle) payloads has shown their inability to fit directly into existing microsatellite buses without involving major changes, or employing more than one platform. To circumvent the problems of pulsed and CW techniques, two approaches have been formulated. The first shows that a CW SAR can be implemented in a mono-static way with a single antenna on a single platform. In this technique, the SAR works in an Interrupted CW (ICW) mode, but these interruptions introduce periodic gaps in the raw data. On processing, these gapped data result in artefacts in the reconstructed images. By applying data based statistical estimation techniques to “fill in the gaps” in the simulated raw SAR data, this research has shown the possibility of minimising the effects of these artefacts. However, once the same techniques are applied to the real SAR data (in this case derived from RADARSAT-1), the artefacts are shown to be problematic. Because of this the ICW SAR design technique it is—set aside. The second shows that an extended chirp mode pulsed (ECMP) SAR (~ 20 - 54 % duty cycle) can be designed with a lowered peak power level which enables a single SSPA to feed a parabolic Cassegrain antenna. The detailed analysis shows the feasibility of developing a microsatellite based SAR design at a comparable price to those of optical missions

    Earth Resources. A continuing bibliography with indexes, issue 34, July 1982

    Get PDF
    This bibliography lists 567 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between April 1, and June 30, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression
    corecore