62 research outputs found

    Radar based positioning for unmanned surface vehicle under GPS denial environment

    Get PDF

    Digital Cognitive Companions for Marine Vessels : On the Path Towards Autonomous Ships

    Get PDF
    As for the automotive industry, industry and academia are making extensive efforts to create autonomous ships. The solutions for this are very technology-intense. Many building blocks, often relying on AI technology, need to work together to create a complete system that is safe and reliable to use. Even when the ships are fully unmanned, humans are still foreseen to guide the ships when unknown situations arise. This will be done through teleoperation systems.In this thesis, methods are presented to enhance the capability of two building blocks that are important for autonomous ships; a positioning system, and a system for teleoperation.The positioning system has been constructed to not rely on the Global Positioning System (GPS), as this system can be jammed or spoofed. Instead, it uses Bayesian calculations to compare the bottom depth and magnetic field measurements with known sea charts and magnetic field maps, in order to estimate the position. State-of-the-art techniques for this method typically use high-resolution maps. The problem is that there are hardly any high-resolution terrain maps available in the world. Hence we present a method using standard sea-charts. We compensate for the lower accuracy by using other domains, such as magnetic field intensity and bearings to landmarks. Using data from a field trial, we showed that the fusion method using multiple domains was more robust than using only one domain. In the second building block, we first investigated how 3D and VR approaches could support the remote operation of unmanned ships with a data connection with low throughput, by comparing respective graphical user interfaces (GUI) with a Baseline GUI following the currently applied interfaces in such contexts. Our findings show that both the 3D and VR approaches outperform the traditional approach significantly. We found the 3D GUI and VR GUI users to be better at reacting to potentially dangerous situations than the Baseline GUI users, and they could keep track of the surroundings more accurately. Building from this, we conducted a teleoperation user study using real-world data from a field-trial in the archipelago, where the users should assist the positioning system with bearings to landmarks. The users experienced the tool to give a good overview, and despite the connection with the low throughput, they managed through the GUI to significantly improve the positioning accuracy

    New Navy Fighting Machine in the South China Sea

    Get PDF
    Through the perspective of Hughes, Wayne P.' missile salvo equation, this research examined naval surface forces of the People's Republic of China (PRC) and the United States (U.S.) in order to demonstrate how American surface combatants can defeat PRC anti-access area denial (A2AD) measures in the South China Sea (SCS). Hughes' equation reveals that advantages for American surface forces are obtained by increasing fleet numbers, counter-targeting (CT), and increased scouting. This thesis advocates fleet growth as articulated in Hughes' New Navy Fighting Machine (NNFM) study. Comparisons of the NNFM, the U.S. fleet, and the PRC fleet demonstrate both the disparity facing the American surface forces, and the near parity obtained in the NNFM. CT through unmanned surface vehicles (USVs), and naval obscurants provide American surface forces increased staying power and tactical advantage. Scouting and communications networking through a theater wide constellation of airships provide the American fleet with persistent situational awareness of the battle space, tactical communications with subsurface forces, and improved emissions control (EMCON) measures for surface forces. The distributive properties of the NNFM, combined with this study's CT and scouting findings, offer American surface combatants success over the PRC Navy in the SCS scenario.http://archive.org/details/newnavyfightingm109457408Lieutenant, United States Navy,Lieutenant, United States Nav

    USE OF ARTIFICIAL FIDUCIAL MARKERS FOR USV SWARM COORDINATION

    Get PDF
    Typical swarm algorithms (leader-follower, artificial potentials, etc.) rely on knowledge about the pose of each vehicle and inter-vehicle proximity. This information is often obtained via Global Positioning System (GPS) and communicated via radio-frequency means.. This research examines the capabilities and limitations of using a fiducial marker system in conjunction with an artificial potential field algorithm to achieve inter-vehicle localization and coordinate the motion of unmanned surface vessels operating together in an environment where satellite and radio communications are inhibited. Using Gazebo, a physics-based robotic simulation environment, a virtual model is developed for incorporating fiducial markers on a group of autonomous surface vessels. A control framework using MATLAB and the Robot Operating System (ROS) is developed that integrates image processing, AprilTag fiducial marker detection, and artificial potential control algorithms. This architecture receives multiple video streams, detects AprilTags, and extracts pose information to control the forward motion and inter-vehicle spacing in a swarm of autonomous surface vessels. This control architecture is tested for a variety of trajectories and tuned so that the swarm can successfully maintain formation control.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    Cross Domain IW Threats to SOF Maritime Missions: Implications for U.S. SOF

    Get PDF
    As cyber vulnerabilities proliferate with the expansion of connected devices, wherein security is often forsaken for ease of use, Special Operations Forces (SOF) cannot escape the obvious, massive risk that they are assuming by incorporating emerging technologies into their toolkits. This is especially true in the maritime sector where SOF operates nearshore in littoral zones. As SOF—in support to the U.S. Navy— increasingly operate in these contested maritime environments, they will gradually encounter more hostile actors looking to exploit digital vulnerabilities. As such, this monograph comes at a perfect time as the world becomes more interconnected but also more vulnerable

    Adversarial AI Testcases for Maritime Autonomous Systems

    Get PDF
    Contemporary maritime operations such as shipping are a vital component constituting global trade and defence. The evolution towards maritime autonomous systems, often providing significant benefits (e.g., cost, physical safety), requires the utilisation of artificial intelligence (AI) to automate the functions of a conventional crew. However, unsecured AI systems can be plagued with vulnerabilities naturally inherent within complex AI models. The adversarial AI threat, primarily only evaluated in a laboratory environment, increases the likelihood of strategic adversarial exploitation and attacks on mission-critical AI, including maritime autonomous systems. This work evaluates AI threats to maritime autonomous systems in situ. The results show that multiple attacks can be used against real-world maritime autonomous systems with a range of lethality. However, the effects of AI attacks vary in a dynamic and complex environment from that proposed in lower entropy laboratory environments. We propose a set of adversarial test examples and demonstrate their use, specifically in the marine environment. The results of this paper highlight security risks and deliver a set of principles to mitigate threats to AI, throughout the AI lifecycle, in an evolving threat landscape.</jats:p
    • …
    corecore