17 research outputs found

    A Hybrid Approach to Cognition in Radars

    Get PDF
    In many engineering domains, cognition is emerging to play vital role. Cognition will play crucial role in radar engineering as well for the development of next generation radars. In this paper, a cognitive architecture for radars is introduced, based on hybrid cognitive architectures. The paper proposes deep learning applications for integrated target classification based on high-resolution radar range profile measurements and target revisit time calculation as case studies. The proposed architecture is based on the artificial cognitive systems concepts and provides a basis for addressing cognition in radars, which is inadequately explored for radar systems. Initial experimental studies on the applicability of deep learning techniques under this approach provided promising results

    Toward Deep Learning-Based Human Target Analysis

    Get PDF
    In this chapter, we describe methods toward deep learning-based human target analysis. Firstly, human target analysis in 2D and 3D domains of radar signal is introduced. Furthermore, range-Doppler surface for human target analysis using ultra-wideband radar is described. The construction of range-Doppler surface involves range-Doppler imaging, adaptive threshold detection, and isosurface extraction. In comparison with micro-Doppler profiles and high-resolution range profiles, range-Doppler surface contains range, Doppler, and time information simultaneously. An ellipsoid-based human motion model is designed for validation. Range-Doppler surfaces simulated for different human activities are demonstrated and discussed. With the rapid emergence of deep learning, the development of radar target recognition has been accelerated. We describe several deep learning algorithms for human target analysis. Finally, a few future research considerations are listed to spark inspiration

    A Novel Multi-Input Bidirectional LSTM and HMM Based Approach for Target Recognition from Multi-Domain Radar Range Profiles

    Get PDF
    Radars, as active detection sensors, are known to play an important role in various intelligent devices. Target recognition based on high-resolution range profile (HRRP) is an important approach for radars to monitor interesting targets. Traditional recognition algorithms usually rely on a single feature, which makes it difficult to maintain the recognition performance. In this paper, 2-D sequence features from HRRP are extracted in various data domains such as time-frequency domain, time domain, and frequency domain. A novel target identification method is then proposed, by combining bidirectional Long Short-Term Memory (BLSTM) and a Hidden Markov Model (HMM), to learn these multi-domain sequence features. Specifically, we first extract multi-domain HRRP sequences. Next, a new multi-input BLSTM is proposed to learn these multi-domain HRRP sequences, which are then fed to a standard HMM classifier to learn multi-aspect features. Finally, the trained HMM is used to implement the recognition task. Extensive experiments are carried out on the publicly accessible, benchmark MSTAR database. Our proposed algorithm is shown to achieve an identification accuracy of over 91% with a lower false alarm rate and higher identification confidence, compared to several state-of-the-art techniques

    Dual-band polarimetric HRRP recognition via a brain-inspired multi-channel fusion feature extraction network

    Get PDF
    Radar high-resolution range profile (HRRP) provides geometric and structural information of target, which is important for radar automatic target recognition (RATR). However, due to the limited information dimension of HRRP, achieving accurate target recognition is challenging in applications. In recent years, with the rapid development of radar components and signal processing technology, the acquisition and use of target multi-frequency and polarization scattering information has become a significant way to improve target recognition performance. Meanwhile, deep learning inspired by the human brain has shown great promise in pattern recognition applications. In this paper, a Multi-channel Fusion Feature Extraction Network (MFFE-Net) inspired by the human brain is proposed for dual-band polarimetric HRRP, aiming at addressing the challenges faced in HRRP target recognition. In the proposed network, inspired by the human brain’s multi-dimensional information interaction, the similarity and difference features of dual-frequency HRRP are first extracted to realize the interactive fusion of frequency features. Then, inspired by the human brain’s selective attention mechanism, the interactive weights are obtained for multi-polarization features and multi-scale representation, enabling feature aggregation and multi-scale fusion. Finally, inspired by the human brain’s hierarchical learning mechanism, the layer-by-layer feature extraction and fusion with residual connections are designed to enhance the separability of features. Experiments on simulated and measured datasets verify the accurate recognition capability of MFFE-Net, and ablative studies are conducted to confirm the effectiveness of components of network for recognition

    Deep Learning Network for Classifying Target of Same Shape using RCS Time Series

    Get PDF
    The main intension of this work is to find the warhead and decoy classification and identification. Classification of radar target is one of the utmost imperatives and hardest practical problems in finding out the missile. Detection of target in the pool of decoys and debris is one of the major radas technologies widely used in practice. In this study we mainly focus on the radar target recognition in different shapes like cone, cylinder and sphere based on radar cross section (RCS). RCS is a critical element of the radar signature that is used in this work to identify the target. The concept is to focus on new technique of ML for analyzing the input data and to attain a better accuracy. Machine learning has had a significant impact on the entire industry as a result of its high computational competency for target prediction with precise data analysis. We investigated various machine learning classifiers methods to categorize available radar target data. This chapter summarizes conventional and deep learning technique used for classification of radar target

    An introduction to radar Automatic Target Recognition (ATR) technology in ground-based radar systems

    Full text link
    This paper presents a brief examination of Automatic Target Recognition (ATR) technology within ground-based radar systems. It offers a lucid comprehension of the ATR concept, delves into its historical milestones, and categorizes ATR methods according to different scattering regions. By incorporating ATR solutions into radar systems, this study demonstrates the expansion of radar detection ranges and the enhancement of tracking capabilities, leading to superior situational awareness. Drawing insights from the Russo-Ukrainian War, the paper highlights three pressing radar applications that urgently necessitate ATR technology: detecting stealth aircraft, countering small drones, and implementing anti-jamming measures. Anticipating the next wave of radar ATR research, the study predicts a surge in cognitive radar and machine learning (ML)-driven algorithms. These emerging methodologies aspire to confront challenges associated with system adaptation, real-time recognition, and environmental adaptability. Ultimately, ATR stands poised to revolutionize conventional radar systems, ushering in an era of 4D sensing capabilities

    Segmentation of Oil Spills on Side-Looking Airborne Radar imagery with Autoencoders

    Get PDF
    In this work, we use deep neural autoencoders to segment oil spills from Side-Looking Airborne Radar (SLAR) imagery. Synthetic Aperture Radar (SAR) has been much exploited for ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature use SLAR. Our sensor consists of two SAR antennas mounted on an aircraft, enabling a quicker response than satellite sensors for emergency services when an oil spill occurs. Experiments on TERMA radar were carried out to detect oil spills on Spanish coasts using deep selectional autoencoders and RED-nets (very deep Residual Encoder-Decoder Networks). Different configurations of these networks were evaluated and the best topology significantly outperformed previous approaches, correctly detecting 100% of the spills and obtaining an F 1 score of 93.01% at the pixel level. The proposed autoencoders perform accurately in SLAR imagery that has artifacts and noise caused by the aircraft maneuvers, in different weather conditions and with the presence of look-alikes due to natural phenomena such as shoals of fish and seaweed

    Attention‐enhanced Alexnet for improved radar micro‐Doppler signature classification

    Get PDF
    Abstract This work introduces an attention mechanism that can be integrated into any standard convolution neural network to improve model sensitivity and prediction accuracy with minimal computational overhead. The attention mechanism is introduced in a lightweight network – Alexnet and its classification performance for human micro‐Doppler signatures is evaluated. The Alexnet model trained with an attention module can implicitly highlight the salient regions in the radar signatures while suppressing the irrelevant background regions and consistently improving network predictions. Network visualizations are provided through class activation mapping, providing better insights into how the predictions are made. The visualizations demonstrate how the attention mechanism focusses on the region of interest in the radar signatures

    Introduction to Drone Detection Radar with Emphasis on Automatic Target Recognition (ATR) technology

    Full text link
    This paper discusses the challenges of detecting and categorizing small drones with radar automatic target recognition (ATR) technology. The authors suggest integrating ATR capabilities into drone detection radar systems to improve performance and manage emerging threats. The study focuses primarily on drones in Group 1 and 2. The paper highlights the need to consider kinetic features and signal signatures, such as micro-Doppler, in ATR techniques to efficiently recognize small drones. The authors also present a comprehensive drone detection radar system design that balances detection and tracking requirements, incorporating parameter adjustment based on scattering region theory. They offer an example of a performance improvement achieved using feedback and situational awareness mechanisms with the integrated ATR capabilities. Furthermore, the paper examines challenges related to one-way attack drones and explores the potential of cognitive radar as a solution. The integration of ATR capabilities transforms a 3D radar system into a 4D radar system, resulting in improved drone detection performance. These advancements are useful in military, civilian, and commercial applications, and ongoing research and development efforts are essential to keep radar systems effective and ready to detect, track, and respond to emerging threats.Comment: 17 pages, 14 figures, submitted to a journal and being under revie
    corecore