3,878 research outputs found

    Efficient learning methods to tune algorithm parameters

    Get PDF
    This thesis focuses on the algorithm configuration problem. In particular, three efficient learning configurators are introduced to tune parameters offline. The first looks into metaoptimization, where the algorithm is expected to solve similar problem instances within varying computational budgets. Standard meta-optimization techniques have to be repeated whenever the available computational budget changes, as the parameters that work well for small budgets, may not be suitable for larger ones. The proposed Flexible Budget method can, in a single run, identify the best parameter setting for all possible computational budgets less than a specified maximum, without compromising solution quality. Hence, a lot of time is saved. This will be shown experimentally. The second regards Racing algorithms which often do not fully utilize the available computational budget to find the best parameter setting, as they may terminate whenever a single parameter remains in the race. The proposed Racing with reset can overcome this issue, and at the same time adapt Racing’s hyper-parameter α online. Experiments will show that such adaptation enables the algorithm to achieve significantly lower failure rates, compared to any fixed α set by the user. The third extends on Racing with reset by allowing it to utilize all the information gathered previously when it adapts α, it also permits Racing algorithms in general to intelligently allocate the budget in each iteration, as opposed to equally allocating it. All developed Racing algorithms are compared to two budget allocators from the Simulation Optimization literature, OCBA and CBA, and to equal allocation to demonstrate under which conditions each performs best in terms of minimizing the probability of incorrect selection

    Towards portfolios of streamlined constraint models : a case study with the balanced academic curriculum problem

    Get PDF
    Funding: This work is supported by EPSRC grant EP/P015638/1 and used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1). Nguyen Dang is a Leverhulme Early Career Fellow.Augmenting a base constraint model with additional constraints can strengthen the inferences made by a solver and therefore reduce search effort. We focus on the automatic addition of streamliner constraints, derived from the types present in an abstract Essence specification of a problem class of interest, which trade completeness for potentially very significant reduction in search. The refinement of streamlined Essence specifications into constraint models suitable for input to constraint solvers gives rise to a large number of modelling choices in addition to those required for the base Essence specification. Previous automated streamlining approaches have been limited in evaluating only a single default model for each streamlined specification. In this paper we explore the effect of model selection in the context of streamlined specifications. We propose a new best-first search method that generates a portfolio of Pareto Optimal streamliner-model combinations by evaluating for each streamliner a portfolio of models to search and explore the variability in performance and find the optimal model. Various forms of racing are utilised to constrain the computational cost of training.Publisher PD

    Living at the Extremes

    Get PDF

    Efficient information collection in stochastic optimisation

    Get PDF
    This thesis focuses on a class of information collection problems in stochastic optimisation. Algorithms in this area often need to measure the performances of several potential solutions, and use the collected information in their search for high-performance solutions, but only have a limited budget for measuring. A simple approach that allocates simulation time equally over all potential solutions may waste time in collecting additional data for the alternatives that can be quickly identified as non-promising. Instead, algorithms should amend their measurement strategy to iteratively examine the statistical evidences collected thus far and focus computational efforts on the most promising alternatives. This thesis develops new efficient methods of collecting information to be used in stochastic optimisation problems. First, we investigate an efficient measurement strategy used for the solution selection procedure of two-stage linear stochastic programs. In the solution selection procedure, finite computational resources must be allocated among numerous potential solutions to estimate their performances and identify the best solution. We propose a two-stage sampling approach that exploits a Wasserstein-based screening rule and an optimal computing budget allocation technique to improve the efficiency of obtaining a high-quality solution. Numerical results show our method provides good trade-offs between computational effort and solution performance. Then, we address the information collection problems that are encountered in the search for robust solutions. Specifically, we use an evolutionary strategy to solve a class of simulation optimisation problems with computationally expensive blackbox functions. We implement an archive sample approximation method to ix reduce the required number of evaluations. The main challenge in the application of this method is determining the locations of additional samples drawn in each generation to enrich the information in the archive and minimise the approximation error. We propose novel sampling strategies by using the Wasserstein metric to estimate the possible benefit of a potential sample location on the approximation error. An empirical comparison with several previously proposed archive-based sample approximation methods demonstrates the superiority of our approaches. In the final part of this thesis, we propose an adaptive sampling strategy for the rollout algorithm to solve the clinical trial scheduling and resource allocation problem under uncertainty. The proposed sampling strategy method exploits the variance reduction technique of common random numbers and the empirical Bernstein inequality in a statistical racing procedure, which can balance the exploration and exploitation of the rollout algorithm. Moreover, we present an augmented approach that utilises a heuristic-based grouping rule to enhance the simulation efficiency by breaking down the overall action selection problem into a selection problem involving small groups. The numerical results show that the proposed method provides competitive results within a reasonable amount of computational time

    Model Selection via Racing

    Get PDF
    Model Selection (MS) is an important aspect of machine learning, as necessitated by the No Free Lunch theorem. Briefly speaking, the task of MS is to identify a subset of models that are optimal in terms of pre-selected optimization criteria. There are many practical applications of MS, such as model parameter tuning, personalized recommendations, A/B testing, etc. Lately, some MS research has focused on trading off exactness of the optimization with somewhat alleviating the computational burden entailed. Recent attempts along this line include metaheuristics optimization, local search-based approaches, sequential model-based methods, portfolio algorithm approaches, and multi-armed bandits. Racing Algorithms (RAs) are an active research area in MS, which trade off some computational cost for a reduced, but acceptable likelihood that the models returned are indeed optimal among the given ensemble of models. All existing RAs in the literature are designed as Single-Objective Racing Algorithm (SORA) for Single-Objective Model Selection (SOMS), where a single optimization criterion is considered for measuring the goodness of models. Moreover, they are offline algorithms in which MS occurs before model deployment and the selected models are optimal in terms of their overall average performances on a validation set of problem instances. This work aims to investigate racing approaches along two distinct directions: Extreme Model Selection (EMS) and Multi-Objective Model Selection (MOMS). In EMS, given a problem instance and a limited computational budget shared among all the candidate models, one is interested in maximizing the final solution quality. In such a setting, MS occurs during model comparison in terms of maximum performance and involves no model validation. EMS is a natural framework for many applications. However, EMS problems remain unaddressed by current racing approaches. In this work, the first RA for EMS, named Max-Race, is developed, so that it optimizes the extreme solution quality by automatically allocating the computational resources among an ensemble of problem solvers for a given problem instance. In Max-Race, significant difference between the extreme performances of any pair of models is statistically inferred via a parametric hypothesis test under the Generalized Pareto Distribution (GPD) assumption. Experimental results have confirmed that Max-Race is capable of identifying the best extreme model with high accuracy and low computational cost. Furthermore, in machine learning, as well as in many real-world applications, a variety of MS problems are multi-objective in nature. MS which simultaneously considers multiple optimization criteria is referred to as MOMS. Under this scheme, a set of Pareto optimal models is sought that reflect a variety of compromises between optimization objectives. So far, MOMS problems have received little attention in the relevant literature. Therefore, this work also develops the first Multi-Objective Racing Algorithm (MORA) for a fixed-budget setting, namely S-Race. S-Race addresses MOMS in the proper sense of Pareto optimality. Its key decision mechanism is the non-parametric sign test, which is employed for inferring pairwise dominance relationships. Moreover, S-Race is able to strictly control the overall probability of falsely eliminating any non-dominated models at a user-specified significance level. Additionally, SPRINT-Race, the first MORA for a fixed-confidence setting, is also developed. In SPRINT-Race, pairwise dominance and non-dominance relationships are established via the Sequential Probability Ratio Test with an Indifference zone. Moreover, the overall probability of falsely eliminating any non-dominated models or mistakenly retaining any dominated models is controlled at a prescribed significance level. Extensive experimental analysis has demonstrated the efficiency and advantages of both S-Race and SPRINT-Race in MOMS

    Dynamicity and Performance in Adaptive Organizations

    Get PDF
    In this dissertation, I focus on the conceptualization and empirical investigation of organizational adaptation. Specifically, I intend to study how dynamic organizations evolve and under which conditions they successfully adapt to a changing environment. In essay 1 (with D. Levinthal), we develop a simulation model to clarify and explore some of the basic conceptual issues concerning the dynamics through which business practices locally adapt within an intra-organizational ecology of organizational level skills, knowledge, and capabilities subject to processes of mutation and selection. For essay 2 (with A. Prencipe), we designed and conducted a field project by collecting qualitative data: a mix of archival data, interviews and ethnographic field notes. The main goal is to investigate how organizational adaptation plays out under the pressure of various institutional forces. Our findings illustrate that institutional forces generate selective reactions within the ecology of existing organizational routines. Conversely, non-institutional forces adapt to the existing behavioral forms following a two-way dynamic process. In essay 3, I developed an empirical research design based on a panel data analysis to investigate the role of dynamic capabilities in boosting adaptation performance. This work examines some of the fundamental contingencies that impact the relationship between dynamic capabilities and organizational performance. Specifically, although prior experience in product adaptation is considered as a key driver of superior performance, its value is found to be highly conditional on both the level of focal activity - a recent adaptation effort on specific activities - and the intensity of the environmental changes

    Stabilizing Unsupervised Environment Design with a Learned Adversary

    Full text link
    A key challenge in training generally-capable agents is the design of training tasks that facilitate broad generalization and robustness to environment variations. This challenge motivates the problem setting of Unsupervised Environment Design (UED), whereby a student agent trains on an adaptive distribution of tasks proposed by a teacher agent. A pioneering approach for UED is PAIRED, which uses reinforcement learning (RL) to train a teacher policy to design tasks from scratch, making it possible to directly generate tasks that are adapted to the agent's current capabilities. Despite its strong theoretical backing, PAIRED suffers from a variety of challenges that hinder its practical performance. Thus, state-of-the-art methods currently rely on curation and mutation rather than generation of new tasks. In this work, we investigate several key shortcomings of PAIRED and propose solutions for each shortcoming. As a result, we make it possible for PAIRED to match or exceed state-of-the-art methods, producing robust agents in several established challenging procedurally-generated environments, including a partially-observed maze navigation task and a continuous-control car racing environment. We believe this work motivates a renewed emphasis on UED methods based on learned models that directly generate challenging environments, potentially unlocking more open-ended RL training and, as a result, more general agents.Comment: CoLLAs 2023 - Oral; Second and third authors contributed equall
    • 

    corecore