3,800 research outputs found

    Towards secure end-to-end data aggregation in AMI through delayed-integrity-verification

    Get PDF
    The integrity and authenticity of the energy usage data in Advanced Metering Infrastructure (AMI) is crucial to ensure the correct energy load to facilitate generation, distribution and customer billing. Any malicious tampering to the data must be detected immediately. This paper introduces secure end-to-end data aggregation for AMI, a security protocol that allows the concentrators to securely aggregate the data collected from the smart meters, while enabling the utility back-end that receives the aggregated data to verify the integrity and data originality. Compromise of concentrators can be detected. The aggregated data is protected using Chameleon Signatures and then forwarded to the utility back-end for verification, accounting, and analysis. Using the Trapdoor Chameleon Hash Function, the smart meters can periodically send an evidence to the utility back-end, by computing an alternative message and a random value (m', r) such that m' consists of all previous energy usage measurements of the smart meter in a specified period of time. By verifying that the Chameleon Hash Value of (m', r) and that the energy usage matches those aggregated by the concentrators, the utility back-end is convinced of the integrity and authenticity of the data from the smart meters. Any data anomaly between smart meters and concentrators can be detected, thus indicating potential compromise of concentrators

    Signcryption schemes with threshold unsigncryption, and applications

    Get PDF
    The final publication is available at link.springer.comThe goal of a signcryption scheme is to achieve the same functionalities as encryption and signature together, but in a more efficient way than encrypting and signing separately. To increase security and reliability in some applications, the unsigncryption phase can be distributed among a group of users, through a (t, n)-threshold process. In this work we consider this task of threshold unsigncryption, which has received very few attention from the cryptographic literature up to now (maybe surprisingly, due to its potential applications). First we describe in detail the security requirements that a scheme for such a task should satisfy: existential unforgeability and indistinguishability, under insider chosen message/ciphertext attacks, in a multi-user setting. Then we show that generic constructions of signcryption schemes (by combining encryption and signature schemes) do not offer this level of security in the scenario of threshold unsigncryption. For this reason, we propose two new protocols for threshold unsigncryption, which we prove to be secure, one in the random oracle model and one in the standard model. The two proposed schemes enjoy an additional property that can be very useful. Namely, the unsigncryption protocol can be divided in two phases: a first one where the authenticity of the ciphertext is verified, maybe by a single party; and a second one where the ciphertext is decrypted by a subset of t receivers, without using the identity of the sender. As a consequence, the schemes can be used in applications requiring some level of anonymity, such as electronic auctions.Peer ReviewedPostprint (author's final draft

    Making Existential-Unforgeable Signatures Strongly Unforgeable in the Quantum Random-Oracle Model

    Get PDF
    Strongly unforgeable signature schemes provide a more stringent security guarantee than the standard existential unforgeability. It requires that not only forging a signature on a new message is hard, it is infeasible as well to produce a new signature on a message for which the adversary has seen valid signatures before. Strongly unforgeable signatures are useful both in practice and as a building block in many cryptographic constructions. This work investigates a generic transformation that compiles any existential-unforgeable scheme into a strongly unforgeable one, which was proposed by Teranishi et al. and was proven in the classical random-oracle model. Our main contribution is showing that the transformation also works against quantum adversaries in the quantum random-oracle model. We develop proof techniques such as adaptively programming a quantum random-oracle in a new setting, which could be of independent interest. Applying the transformation to an existential-unforgeable signature scheme due to Cash et al., which can be shown to be quantum-secure assuming certain lattice problems are hard for quantum computers, we get an efficient quantum-secure strongly unforgeable signature scheme in the quantum random-oracle model.Comment: 15 pages, to appear in Proceedings TQC 201

    Secure authentication for remote patient monitoring withwireless medical sensor networks

    Get PDF
    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes. © 2016 by the authors; licensee MDPI, Basel, Switzerland
    • …
    corecore