12 research outputs found

    parMERASA Multi-Core Execution of Parallelised Hard Real-Time Applications Supporting Analysability

    Get PDF
    International audienceEngineers who design hard real-time embedded systems express a need for several times the performance available today while keeping safety as major criterion. A breakthrough in performance is expected by parallelizing hard real-time applications and running them on an embedded multi-core processor, which enables combining the requirements for high-performance with timing-predictable execution. parMERASA will provide a timing analyzable system of parallel hard real-time applications running on a scalable multicore processor. parMERASA goes one step beyond mixed criticality demands: It targets future complex control algorithms by parallelizing hard real-time programs to run on predictable multi-/many-core processors. We aim to achieve a breakthrough in techniques for parallelization of industrial hard real-time programs, provide hard real-time support in system software, WCET analysis and verification tools for multi-cores, and techniques for predictable multi-core designs with up to 64 cores

    WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASA Multi-Core

    Get PDF
    To meet performance requirements as well as constraints on cost and power consumption, future embedded systems will be designed with multi-core processors. However, the question of timing analysability is raised with these architectures. In the MERASA project, a WCET-aware multi-core processor has been designed with the appropriate system software. They both guarantee that the WCET of tasks running on different cores can be safely analyzed since their possible interactions can be bounded. Nevertheless, computing the WCET of a parallel application is still not straightforward and a high-level preliminary analysis of the communication and synchronization patterns must be performed. In this paper, we report on our experience in evaluating the WCET of a parallel 3D multigrid solver code and we propose lines for further research on this topic

    parMERASA – multicore execution of parallelised hard real-time applications supporting analysability

    Get PDF
    Abstract-Engineers who design hard real-time embedded systems express a need for several times the performance available today while keeping safety as major criterion. A breakthrough in performance is expected by parallelizing hard real-time applications and running them on an embedded multi-core processor, which enables combining the requirements for high-performance with timing-predictable execution. parMERASA will provide a timing analyzable system of parallel hard real-time applications running on a scalable multicore processor. parMERASA goes one step beyond mixed criticality demands: It targets future complex control algorithms by parallelizing hard real-time programs to run on predictable multi-/many-core processors. We aim to achieve a breakthrough in techniques for parallelization of industrial hard real-time programs, provide hard real-time support in system software, WCET analysis and verification tools for multi-cores, and techniques for predictable multi-core designs with up to 64 cores

    Introduction

    Get PDF
    This chapter provides an overview of the book theme, motivating the need for high-performance and time-predictable embedded computing. It describes the challenges introduced by the need for time-predictability on the one hand, and high-performance on the other, discussing on a high level how these contradictory requirements can be simultaneously supported

    High Performance Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systemsThe work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things

    High-Performance and Time-Predictable Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systems The work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things.info:eu-repo/semantics/publishedVersio

    A Multi-core processor for hard real-time systems

    Get PDF
    The increasing demand for new functionalities in current and future hard real-time embedded systems, like the ones deployed in automotive and avionics industries, is driving an increment in the performance required in current embedded processors. Multi-core processors represent a good design solution to cope with such higher performance requirements due to their better performance-per-watt ratio while maintaining the core design simple. Moreover, multi-cores also allow executing mixed-criticality level workloads composed of tasks with and without hard real-time requirements, maximizing the utilization of the hardware resources while guaranteeing low cost and low power consumption. Despite those benefits, current multi-core processors are less analyzable than single-core ones due to the interferences between different tasks when accessing hardware shared resources. As a result, estimating a meaningful Worst-Case Execution Time (WCET) estimation - i.e. to compute an upper bound of the application's execution time - becomes extremely difficult, if not even impossible, because the execution time of a task may change depending on the other threads running at the same time. This makes the WCET of a task dependent on the set of inter-task interferences introduced by the co-running tasks. Providing a WCET estimation independent from the other tasks (time composability property) is a key requirement in hard real-time systems. This thesis proposes a new multi-core processor design in which time composability is achieved, hence enabling the use of multi-cores in hard real-time systems. With our proposals the WCET estimation of a HRT is independent from the other co-running tasks. To that end, we design a multi-core processor in which the maximum delay a request from a Hard Real-time Task (HRT), accessing a hardware shared resource can suffer due to other tasks is bounded: our processor guarantees that a request to a shared resource cannot be delayed longer than a given Upper Bound Delay (UBD). In addition, the UBD allows identifying the impact that different processor configurations may have on the WCET by determining the sensitivity of a HRT to different resource allocations. This thesis proposes an off-line task allocation algorithm (called IA3: Interference-Aware Allocation Algorithm), that allocates tasks in a task set based on the HRT's sensitivity to different resource allocations. As a result the hardware shared resources used by HRTs are minimized, by allowing Non Hard Real-time Tasks (NHRTs) to use the rest of resources. Overall, our proposals provide analyzability for the HRTs allowing NHRTs to be executed into the same chip without any effect on the HRTs. The previous first two proposals of this thesis focused on supporting the execution of multi-programmed workloads with mixed-criticality levels (composed of HRTs and NHRTs). Higher performance could be achieved by implementing multi-threaded applications. As a first step towards supporting hard real-time parallel applications, this thesis proposes a new hardware/software approach to guarantee a predictable execution of software pipelined parallel programs. This thesis also investigates a solution to verify the timing correctness of HRTs without requiring any modification in the core design: we design a hardware unit which is interfaced with the processor and integrated into a functional-safety aware methodology. This unit monitors the execution time of a block of instructions and it detects if it exceeds the WCET. Concretely, we show how to handle timing faults on a real industrial automotive platform.La creciente demanda de nuevas funcionalidades en los sistemas empotrados de tiempo real actuales y futuros en industrias como la automovilística y la de aviación, está impulsando un incremento en el rendimiento necesario en los actuales procesadores empotrados. Los procesadores multi-núcleo son una solución eficiente para obtener un mayor rendimiento ya que aumentan el rendimiento por vatio, manteniendo el diseño del núcleo simple. Por otra parte, los procesadores multi-núcleo también permiten ejecutar cargas de trabajo con niveles de tiempo real mixtas (formadas por tareas de tiempo real duro y laxo así como tareas sin requerimientos de tiempo real), maximizando así la utilización de los recursos de procesador y garantizando el bajo consumo de energía. Sin embargo, a pesar los beneficios mencionados anteriormente, los actuales procesadores multi-núcleo son menos analizables que los de un solo núcleo debido a las interferencias surgidas cuando múltiples tareas acceden simultáneamente a los recursos compartidos del procesador. Como resultado, la estimación del peor tiempo de ejecución (conocido como WCET) - es decir, una cota superior del tiempo de ejecución de la aplicación - se convierte en extremadamente difícil, si no imposible, porque el tiempo de ejecución de una tarea puede cambiar dependiendo de las otras tareas que se estén ejecutando concurrentemente. Determinar una estimación del WCET independiente de las otras tareas es un requisito clave en los sistemas empotrados de tiempo real duro. Esta tesis propone un nuevo diseño de procesador multi-núcleo en el que el tiempo de ejecución de las tareas se puede componer, lo que permitirá el uso de procesadores multi-núcleo en los sistemas de tiempo real duro. Para ello, diseñamos un procesador multi-núcleo en el que la máxima demora que puede sufrir una petición de una tarea de tiempo real duro (HRT) para acceder a un recurso hardware compartido debido a otras tareas está acotado, tiene un límite superior (UBD). Además, UBD permite identificar el impacto que las diferentes posibles configuraciones del procesador pueden tener en el WCET, mediante la determinación de la sensibilidad en la variación del tiempo de ejecución de diferentes reservas de recursos del procesador. Esta tesis propone un algoritmo estático de reserva de recursos (llamado IA3), que asigna tareas a núcleos en función de dicha sensibilidad. Como resultado los recursos compartidos del procesador usados por tareas HRT se reducen al mínimo, permitiendo que las tareas sin requerimiento de tiempo real (NHRTs) puedas beneficiarse del resto de recursos. Por lo tanto, las propuestas presentadas en esta tesis permiten el análisis del WCET para tareas HRT, permitiendo así mismo la ejecución de tareas NHRTs en el mismo procesador multi-núcleo, sin que estas tengan ningún efecto sobre las tareas HRT. Las propuestas presentadas anteriormente se centran en el soporte a la ejecución de múltiples cargas de trabajo con diferentes niveles de tiempo real (HRT y NHRTs). Sin embargo, un mayor rendimiento puede lograrse mediante la transformación una tarea en múltiples sub-tareas paralelas. Esta tesis propone una nueva técnica, con soporte del procesador y del sistema operativo, que garantiza una ejecución analizable del modelo de ejecución paralela software pipelining. Esta tesis también investiga una solución para verificar la corrección del WCET de HRT sin necesidad de ninguna modificación en el diseño de la base: un nuevo componente externo al procesador se conecta a este sin necesidad de modificarlo. Esta nueva unidad monitorea el tiempo de ejecución de un bloque de instrucciones y detecta si se excede el WCET. Esta unidad permite detectar fallos de sincronización en sistemas de computación utilizados en automóviles

    A real-time scratchpad-centric OS for multi-core embedded systems

    Get PDF
    Multicore processors have been increasing in development by the industry to meet the ever-growing processing requirements of various applications because these processors offer benefits such as reduced power consumption, more processing power and efficient parallel task execution for general purpose work- loads. However, in hard real time systems where predictability is a key aspect, the average performance of these multicore processors is even worse than the scenarios in which the same task set is executed on a single core processor. This performance degradation is due to the fact that the multicore systems have shared resources such as DRAM, BUS and caches which make the system highly unpredictable. One way to achieve predictability in such systems is to serialize the access of the cores to the shared resources such that there is no contention. Another widely emerging approach is the integration of the scratchpad memory. Using scratchpad, at run time, the code and data for the requested task is made available in the scratchpad and contention can be avoided. In this thesis, we approach the problem of shared resource arbitration at an OS-level and propose a novel scratchpad centric OS design for multi-core platforms. In the proposed OS, the predictable usage of shared resources across multiple cores represents a central design-time goal. Hence, we show (i) how contention-free execution of real-time tasks can be achieved on scratchpad-based architectures, and (ii) how a separation of application logic and I/O operations in the time domain can be enforced. To validate the proposed design, we implemented the proposed OS using a commercial-off-the-shelf (COTS) platform. Experiments show that this novel design delivers predictable temporal behavior to hard real-time tasks, and it improves performance up to 2.1x compared to traditional approaches

    On hard real-time scheduling of cyclo-static dataflow and its application in system-level design

    Get PDF
    This dissertation addresses the problem of designing hard real-time streaming systems running a set of parallel streaming programs in an automated way such that the programs provably meet their timing requirements. A scheduling framework is proposed with which it is analytically proven that any streaming program, modeled as an acyclic Cyclo-Static Dataflow (CSDF) graph, can be executed as a set of real-time periodic tasks. The proposed framework computes the parameters of the periodic tasks corresponding to the graph actors and the minimum buffer sizes of the communication channels such that a valid periodic schedule is guaranteed to exist. In order to demonstrate the effectiveness of the proposed scheduling framework, a system-level design flow that incorporates the scheduling framework is proposed. This proposed design flow accepts, as input, algorithmic sequential specifications of streaming programs, and then applies a set of systematic and automated steps that produce, as output, the final system implementation, which provably meets the timing requirements of the programs. The final system implementation consists of the parallelized versions of the input streaming programs together with the hardware needed to run them. The proposed scheduling framework and design flow are evaluated through a set of experiments. These experiments illustrate the effectiveness of the proposed scheduling framework and design flow.Computer Systems, Imagery and Medi

    A time-predictable many-core processor design for critical real-time embedded systems

    Get PDF
    Critical Real-Time Embedded Systems (CRTES) are in charge of controlling fundamental parts of embedded system, e.g. energy harvesting solar panels in satellites, steering and breaking in cars, or flight management systems in airplanes. To do so, CRTES require strong evidence of correct functional and timing behavior. The former guarantees that the system operates correctly in response of its inputs; the latter ensures that its operations are performed within a predefined time budget. CRTES aim at increasing the number and complexity of functions. Examples include the incorporation of \smarter" Advanced Driver Assistance System (ADAS) functionality in modern cars or advanced collision avoidance systems in Unmanned Aerial Vehicles (UAVs). All these new features, implemented in software, lead to an exponential growth in both performance requirements and software development complexity. Furthermore, there is a strong need to integrate multiple functions into the same computing platform to reduce the number of processing units, mass and space requirements, etc. Overall, there is a clear need to increase the computing power of current CRTES in order to support new sophisticated and complex functionality, and integrate multiple systems into a single platform. The use of multi- and many-core processor architectures is increasingly seen in the CRTES industry as the solution to cope with the performance demand and cost constraints of future CRTES. Many-cores supply higher performance by exploiting the parallelism of applications while providing a better performance per watt as cores are maintained simpler with respect to complex single-core processors. Moreover, the parallelization capabilities allow scheduling multiple functions into the same processor, maximizing the hardware utilization. However, the use of multi- and many-cores in CRTES also brings a number of challenges related to provide evidence about the correct operation of the system, especially in the timing domain. Hence, despite the advantages of many-cores and the fact that they are nowadays a reality in the embedded domain (e.g. Kalray MPPA, Freescale NXP P4080, TI Keystone II), their use in CRTES still requires finding efficient ways of providing reliable evidence about the correct operation of the system. This thesis investigates the use of many-core processors in CRTES as a means to satisfy performance demands of future complex applications while providing the necessary timing guarantees. To do so, this thesis contributes to advance the state-of-the-art towards the exploitation of parallel capabilities of many-cores in CRTES contributing in two different computing domains. From the hardware domain, this thesis proposes new many-core designs that enable deriving reliable and tight timing guarantees. From the software domain, we present efficient scheduling and timing analysis techniques to exploit the parallelization capabilities of many-core architectures and to derive tight and trustworthy Worst-Case Execution Time (WCET) estimates of CRTES.Los sistemas críticos empotrados de tiempo real (en ingles Critical Real-Time Embedded Systems, CRTES) se encargan de controlar partes fundamentales de los sistemas integrados, e.g. obtención de la energía de los paneles solares en satélites, la dirección y frenado en automóviles, o el control de vuelo en aviones. Para hacerlo, CRTES requieren fuerte evidencias del correcto comportamiento funcional y temporal. El primero garantiza que el sistema funciona correctamente en respuesta de sus entradas; el último asegura que sus operaciones se realizan dentro de unos limites temporales establecidos previamente. El objetivo de los CRTES es aumentar el número y la complejidad de las funciones. Algunos ejemplos incluyen los sistemas inteligentes de asistencia a la conducción en automóviles modernos o los sistemas avanzados de prevención de colisiones en vehiculos aereos no tripulados. Todas estas nuevas características, implementadas en software,conducen a un crecimiento exponencial tanto en los requerimientos de rendimiento como en la complejidad de desarrollo de software. Además, existe una gran necesidad de integrar múltiples funciones en una sóla plataforma para así reducir el número de unidades de procesamiento, cumplir con requisitos de peso y espacio, etc. En general, hay una clara necesidad de aumentar la potencia de cómputo de los actuales CRTES para soportar nueva funcionalidades sofisticadas y complejas e integrar múltiples sistemas en una sola plataforma. El uso de arquitecturas multi- y many-core se ve cada vez más en la industria CRTES como la solución para hacer frente a la demanda de mayor rendimiento y las limitaciones de costes de los futuros CRTES. Las arquitecturas many-core proporcionan un mayor rendimiento explotando el paralelismo de aplicaciones al tiempo que proporciona un mejor rendimiento por vatio ya que los cores se mantienen más simples con respecto a complejos procesadores de un solo core. Además, las capacidades de paralelización permiten programar múltiples funciones en el mismo procesador, maximizando la utilización del hardware. Sin embargo, el uso de multi- y many-core en CRTES también acarrea ciertos desafíos relacionados con la aportación de evidencias sobre el correcto funcionamiento del sistema, especialmente en el ámbito temporal. Por eso, a pesar de las ventajas de los procesadores many-core y del hecho de que éstos son una realidad en los sitemas integrados (por ejemplo Kalray MPPA, Freescale NXP P4080, TI Keystone II), su uso en CRTES aún precisa de la búsqueda de métodos eficientes para proveer evidencias fiables sobre el correcto funcionamiento del sistema. Esta tesis ahonda en el uso de procesadores many-core en CRTES como un medio para satisfacer los requisitos de rendimiento de aplicaciones complejas mientras proveen las garantías de tiempo necesarias. Para ello, esta tesis contribuye en el avance del estado del arte hacia la explotación de many-cores en CRTES en dos ámbitos de la computación. En el ámbito del hardware, esta tesis propone nuevos diseños many-core que posibilitan garantías de tiempo fiables y precisas. En el ámbito del software, la tesis presenta técnicas eficientes para la planificación de tareas y el análisis de tiempo para aprovechar las capacidades de paralelización en arquitecturas many-core, y también para derivar estimaciones de peor tiempo de ejecución (Worst-Case Execution Time, WCET) fiables y precisas
    corecore