813 research outputs found

    Pre-Congestion Notification (PCN) Architecture

    Get PDF
    This document describes a general architecture for flow admission and termination based on pre-congestion information in order to protect the quality of service of established, inelastic flows within a single Diffserv domain.\u

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Performance analysis of a new mobility/QoS-aware architecture

    Get PDF
    Ideally, the future Internet must provide acceptable Quality of Service (QoS) to mobile users that are running real-time applications and are moving across different access points at high speeds. The user mobility presents a great challenge to the network layer in order to maintain users on going connections. Currently, the Internet protocol that manages the user mobility at the network level is the Mobile Internet Protocol (MIP). This protocol, when a mobile user changes its point of attachment, maintains the same IP address for mobile node, so that user mobility became invisible to the application level and thus avoiding a connection interruption. Although, MIP standard allows the user mobility while maintaining an uninterrupted connection to an application, it does not have any concerns with the QoS support provided to applications with more strict performance requirements such as real-time applications. This paper addresses the issue of mobility and QoS management principles as well as the mobility and QoS management integration in the sense of build a QoS-aware architecture for mobile Internet. After covering the mobility and QoS management principles and integration, this paper also proposes a new QoS-aware architecture for mobile Internet. This new architecture takes into account the specific characteristics of mobile networks in order to design an integrated Mobility/QoS-aware management architecture suitable for real-time applications requirements. The simulation results indicate that the suggested architecture is able to provide acceptable QoS levels to real-time applications that are running in mobiles devices.(undefined

    Traffic Engineering in G-MPLS networks with QoS guarantees

    Get PDF
    In this paper a new Traffic Engineering (TE) scheme to efficiently route sub-wavelength requests with different QoS requirements is proposed for G-MPLS networks. In most previous studies on TE based on dynamic traffic grooming, the objectives were to minimize the rejection probability by respecting the constraints of the optical node architecture, but without considering service differentiation. In practice, some high-priority (HP) connections can instead be characterized by specific constraints on the maximum tolerable end-to-end delay and packet-loss ratio. The proposed solution consists of a distributed two-stage scheme: each time a new request arrives, an on-line dynamic grooming scheme finds a route which fulfills the QoS requirements. If a HP request is blocked at the ingress router, a preemption algorithm is executed locally in order to create room for this traffic. The proposed preemption mechanism minimizes the network disruption, both in term of number of rerouted low-priority connections and new set-up lightpaths, and the signaling complexity. Extensive simulation experiments are performed to demonstrate the efficiency of our scheme

    A QoS-enabled resource management scheme for F-HMIPv6 micro mobility approach

    Get PDF
    In the near future, wireless networks will certainly run real-time applications with special Quality of Service (QoS) requirements. In this context micro mobility management schemes such as Fast Handovers over Hierarchical Mobile IPv6 (F-HMIPv6) will be a useful tool in reducing Mobile IPv6 (MIPv6) handover disruption and thereby to improve delay and losses. However, F-HMIPv6 alone does not support QoS requirements for real-time applications. Therefore, in order to accomplish this goal, a novel resource management scheme for the Differentiated Services (DiffServ) QoS model is proposed to be used as an add-on to F-HMIPv6. The new resource management scheme combines the F-HMIPv6 functionalities with the DiffServ QoS model and with network congestion control and dynamic reallocation mechanisms in order to accommodate different QoS traffic requirements. This new scheme based on a Measurement-Based Admission Control (MBAC) algorithm is effective, simple, scalable and avoids the well known traditional resource reservation issues such as state maintenance, signaling overhead and processing load. By means of the admission evaluation of new flows and handover flows, it is able to provide the desired QoS requirements for new flows while preserving the QoS of existing ones. The evaluated results show that all QoS metrics analyzed were significantly improved with the new architecture indicating that it is able to provide a highly predictive QoS support to F-HMIPv6

    A QoS-enable solution for mobile environments

    Get PDF
    This paper addresses the problem of designing a suitable Quality of Service (QoS) solution for mobile environments. The proposed solution deploys a dynamic QoS provisioning scheme able to deal with service protection during node mobility within a local domain, presenting extensions to deal with global mobility. The dynamic QoS provisioning encompasses a QoS architecture that uses explicit and implicit setup mechanisms to request resources from the network for the purpose of supporting control plane functions and optimizing resource allocation. Abstract--- For efficient resource allocation, the resource and mobility management schemes have been coupled resulting in a QoS/Mobility aware network architecture able to react proactively to mobility events. Both management schemes have been optimized to work together, in order to support seamless handovers for mobile users running real-time applications. Abstract--- The analysis of performance improvement and the model parametrization of the proposed solution have been evaluated using simulation. Simulation results show that the solution avoids network congestion and also the starvation of less priority DiffServ classes. Moreover, the results also show that bandwidth utilization for priority classes is levered and that the QoS offered to Mobile Node's (MN's) applications, within each DiffServ class, is maintained in spite of MN mobility. Abstract--- The proposed model is simple, easy to implement and takes into account the mobile Internet requirements. Simulation results show that this new methodology is effective and able to provide QoS services adapted to application requests

    LC-PCN: The Load Control PCN Solution

    Get PDF
    There is an increased interest of simple and scalable resource provisioning solution for Diffserv network. The Load Control PCN (LC-PCN) addresses the following issues:\ud o Admission Control for real time data flows in stateless Diffserv Domains\ud o Flow Termination: Termination of flows in case of exceptional events, such as severe congestion after re-routing.\ud Admission control in a Diffserv stateless domain is a combination of:\ud o Probing, whereby a probe packet is sent along the forwarding path in a network to determine whether a flow can be admitted based upon the current congestion state of the network\ud o Admission Control based on data marking, whereby in congestion situations the data packets are marked to notify the PCN-egress-node that a congestion occurred on a particular PCN-ingress-node to PCN-egress-node path.\ud \ud The scheme provides the capability of controlling the traffic load in the network without requiring signaling or any per-flow processing in the PCN-interior-nodes. The complexity of Load Control is kept to a minimum to make implementation simple.\u

    A micro-mobility solution for supporting QoS in global mobility

    Get PDF
    Today, users want to have simultaneously mobility, Quality of Service (QoS) and be always connected to Internet. Therefore, this paper proposes a QoS micro-mobility solution able to provide QoS support for global mobility. The solution comprises enhancements in the mobility management of Mobile IPv6 (MIPv6) and in the resources management of Differentiated Services (DiffServ) QoS model. The mobility management of MIPv6 was extended with fast and local handovers to improve its efficiency in micro-mobility scenarios with frequent handovers. The DiffServ resource management has been extended with adaptive and dynamic QoS provisioning to improve resources utilization in mobile IP networks. Further, in order to improve resources utilization the mobility and QoS messages were coupled, providing a resource management able to, proactively, react to mobile events. The performance improvement of the proposed solution and the model parametrization was evaluated using a simulation model. Simulation results indicate that the solution avoids network congestion and starvation of less priority DiffServ classes. Moreover, the results also indicate that bandwidth utilization for priority classes increases and the QoS offered to MN's applications, in each DiffServ class, keeps up unchangeable with MN mobility.(undefined

    Quality of Service routing: state of the art report

    Get PDF

    End to End Quality of Service in UMTS Systems

    Get PDF
    corecore