915 research outputs found

    RSS-based sensor network localization in contaminated Gaussian measurement noise

    Full text link

    Target Tracking in Confined Environments with Uncertain Sensor Positions

    Get PDF
    To ensure safety in confined environments such as mines or subway tunnels, a (wireless) sensor network can be deployed to monitor various environmental conditions. One of its most important applications is to track personnel, mobile equipment and vehicles. However, the state-of-the-art algorithms assume that the positions of the sensors are perfectly known, which is not necessarily true due to imprecise placement and/or dropping of sensors. Therefore, we propose an automatic approach for simultaneous refinement of sensors' positions and target tracking. We divide the considered area in a finite number of cells, define dynamic and measurement models, and apply a discrete variant of belief propagation which can efficiently solve this high-dimensional problem, and handle all non-Gaussian uncertainties expected in this kind of environments. Finally, we use ray-tracing simulation to generate an artificial mine-like environment and generate synthetic measurement data. According to our extensive simulation study, the proposed approach performs significantly better than standard Bayesian target tracking and localization algorithms, and provides robustness against outliers.Comment: IEEE Transactions on Vehicular Technology, 201

    Pushing towards the Limit of Sampling Rate: Adaptive Chasing Sampling

    Full text link
    Measurement samples are often taken in various monitoring applications. To reduce the sensing cost, it is desirable to achieve better sensing quality while using fewer samples. Compressive Sensing (CS) technique finds its role when the signal to be sampled meets certain sparsity requirements. In this paper we investigate the possibility and basic techniques that could further reduce the number of samples involved in conventional CS theory by exploiting learning-based non-uniform adaptive sampling. Based on a typical signal sensing application, we illustrate and evaluate the performance of two of our algorithms, Individual Chasing and Centroid Chasing, for signals of different distribution features. Our proposed learning-based adaptive sampling schemes complement existing efforts in CS fields and do not depend on any specific signal reconstruction technique. Compared to conventional sparse sampling methods, the simulation results demonstrate that our algorithms allow 46%46\% less number of samples for accurate signal reconstruction and achieve up to 57%57\% smaller signal reconstruction error under the same noise condition.Comment: 9 pages, IEEE MASS 201

    Applications of Compressive Sampling Technique to Radar and Localization

    Get PDF
    During the last decade, the emerging technique of compressive sampling (CS) has become a popular subject in signal processing and sensor systems. In particular, CS breaks through the limits imposed by the Nyquist sampling theory and is able to substantially reduce the huge amount of data generated by different sources. The technique of CS has been successfully applied in signal acquisition, image compression, and data reduction. Although the theory of CS has been investigated for some radar and localization problems, several important questions have not been answered yet. For example, the performance of CS radar in a cluttered environment has not been comprehensively studied. Applying CS to passive radars and electronic warfare receivers is another concern that needs more attention. Also, it is well known that applying this strategy leads to extra computational costs which might be prohibitive in large-sized localization networks. In this chapter, we first discuss the practical issues in the process of implementing CS radars and localization systems. Then, we present some promising and efficient solutions to overcome the arising problems

    Real-time Outdoor Localization Using Radio Maps: A Deep Learning Approach

    Full text link
    Global Navigation Satellite Systems typically perform poorly in urban environments, where the likelihood of line-of-sight conditions between the devices and the satellites is low, and thus alternative localization methods are required for good accuracy. We present LocUNet: A convolutional, end-to-end trained neural network for the localization task, able to estimate the position of a user from the received signal strength (RSS) from a small number of Base Stations (BSs). In the proposed method, the user to be localized simply reports the measured RSS to a central processing unit, which may be located in the cloud. Using estimations of pathloss radio maps of the BSs and the RSS measurements, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the estimations of radio maps. The proposed method does not require pre-sampling of new environments and is suitable for real-time applications. Moreover, two novel datasets that allow for numerical evaluations of RSS and ToA methods in realistic urban environments are presented and made publicly available for the research community. By using these datasets, we also provide a fair comparison of state-of-the-art RSS and ToA-based methods in the dense urban scenario and show numerically that LocUNet outperforms all the compared methods.Comment: Submitted to IEEE Transactions on Wireless Communication
    • …
    corecore