5 research outputs found

    Query Order and the Polynomial Hierarchy

    Full text link
    Hemaspaandra, Hempel, and Wechsung [cs.CC/9909020] initiated the field of query order, which studies the ways in which computational power is affected by the order in which information sources are accessed. The present paper studies, for the first time, query order as it applies to the levels of the polynomial hierarchy. We prove that the levels of the polynomial hierarchy are order-oblivious. Yet, we also show that these ordered query classes form new levels in the polynomial hierarchy unless the polynomial hierarchy collapses. We prove that all leaf language classes - and thus essentially all standard complexity classes - inherit all order-obliviousness results that hold for P.Comment: 14 page

    Self-Specifying Machines

    Full text link
    We study the computational power of machines that specify their own acceptance types, and show that they accept exactly the languages that \manyonesharp-reduce to NP sets. A natural variant accepts exactly the languages that \manyonesharp-reduce to P sets. We show that these two classes coincide if and only if \psone = \psnnoplusbigohone, where the latter class denotes the sets acceptable via at most one question to \sharpp followed by at most a constant number of questions to \np.Comment: 15 pages, to appear in IJFC
    corecore