6 research outputs found

    Smooth and Collision-Free Navigation for Multiple Mobile Robots and Video Game Characters

    Get PDF
    The navigation of multiple mobile robots or virtual agents through environments containing static and dynamic obstacles to specified goal locations is an important problem in mobile robotics, many video games, and simulated environments. Moreover, technological advances in mobile robot hardware and video games consoles have allowed increasing numbers of mobile robots or virtual agents to navigate shared environments simultaneously. However, coordinating the navigation of large groups of mobile robots or virtual agents remains a difficult task. Kinematic and dynamic constraints and the effects of sensor and actuator uncertainty exaggerate the challenge of navigating multiple physical mobile robots, and video games players demand plausible motion and an ever increasing visual fidelity of virtual agents without sacrificing frame rate. We present new methods for navigating multiple mobile robots or virtual agents through shared environments, each using formulations based on velocity obstacles. These include algorithms that allow navigation through environments in two-dimensional or three-dimensional workspaces containing both static and dynamic obstacles without collisions or oscillations. Each mobile robot or virtual agent senses its surroundings and acts independently, without central coordination or inter-communication with its neighbors, implicitly assuming the neighbors use the same navigation strategy based on the notion of reciprocity. We use the position, velocity, and physical extent of neighboring mobile robots or virtual agents to compute their future trajectories to avoid collisions locally and show that, in principle, it is possible to theoretically guarantee that the motion of each mobile robot or virtual agent is smooth. Moreover, we demonstrate direct, collision-free, and oscillation-free navigation in experiments using physical iRobot Create mobile robots, simulations of multiple differential-drive robots or simple-airplanes, and video games levels containing hundreds of virtual agents.Doctor of Philosoph

    Collision avoidance and dynamic modeling for wheeled mobile robots and industrial manipulators

    Get PDF
    Collision Avoidance and Dynamic Modeling are key topics for researchers dealing with mobile and industrial robotics. A wide variety of algorithms, approaches and methodologies have been exploited, designed or adapted to tackle the problems of finding safe trajectories for mobile robots and industrial manipulators, and of calculating reliable dynamics models able to capture expected and possible also unexpected behaviors of robots. The knowledge of these two aspects and their potential is important to ensure the efficient and correct functioning of Industry 4.0 plants such as automated warehouses, autonomous surveillance systems and assembly lines. Collision avoidance is a crucial aspect to improve automation and safety, and to solve the problem of planning collision-free trajectories in systems composed of multiple autonomous agents such as unmanned mobile robots and manipulators with several degrees of freedom. A rigorous and accurate model explaining the dynamics of robots, is necessary to tackle tasks such as simulation, torque estimation, reduction of mechanical vibrations and design of control law

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019
    corecore