21 research outputs found

    RPO Semantics for Mobile Ambients

    Get PDF
    The paper focuses on the synthesis of labelled transition systems (LTSs) for process calculi, choosing as testbed Mobile Ambients (MAs). The proposal is based on a graphical encoding: a process is mapped into a graph equipped with interfaces, such that the denotation is fully abstract with respect to the standard structural congruence. Graphs with interfaces are amenable to the synthesis mechanism based on borrowed contexts (BCs), an instance of relative pushouts (RPOs). The BC mechanism allows the effective construction of a LTS that has graphs with interfaces as states and labels, and such that the associated bisimilarity is a congruence. Our paper focuses on the analysis of a LTS over processes as graphs with interfaces: we use the LTS on graphs to recover a LTS directly defined over the structure of MAs processes, further defining a set of SOS inference rules capturing the same operational semantics

    Adequacy Issues in Reactive Systems: Barbed Semantics for Mobile Ambients

    Get PDF
    Reactive systems represent a meta-framework aimed at deriving behavioral congruences for those specification formalisms whose operational semantics is provided by rewriting rules. The aim of this thesis is to address one of the main issues of the framework, concerning the adequacy of the standard observational semantics (the IPO and the saturated one) in modelling the concrete semantics of actual formalisms. The problem is that IPO-bisimilarity (obtained considering only minimal labels) is often too discriminating, while the saturated one (via all labels) may be too coarse, and intermediate proposals should then be put forward. We then introduce a more expressive semantics for reactive systems which, thanks to its flexibility, allows for recasting a wide variety of observational, bisimulation-based equivalences. In particular, we propose suitable notions of barbed and weak barbed semantics for reactive systems, and an efficient characterization of them through the IPO-transition systems. We also propose a novel, more general behavioural equivalence: L-bisimilarity, which is able to recast both its IPO and saturated counterparts, as well as the barbed one. The equivalence is parametric with respect to a set L of reactive systems labels, and it is shown that under mild conditions on L it is a congruence. In order to provide a suitable test-bed, we instantiate our proposal over the asynchronous CCS and, most importantly, over the mobile ambients calculus, whose semantics is still in a flux

    A graph semantics for a variant of the ambient calculus more adequate for modeling SOC

    Get PDF
    In this paper we present a graph semantics of a variant of the well known ambient calculus. The main change of our variant is to extract the mobility commands of the original calculus from the ambient topology. Similar to a previous work of ours, we prove that our encoding have good properties. We strongly believe that this variant would allow us to integrate our graph semantics of our mobile calculus with previous work of us in service oriented computing (SOC). Basically, our work on SOC develops a new graph transformation system which we call temporal symbolic graphs. This new graph formalism is used to give semantics to a design language for SOC developed in an european project, but it could also be used in connection with other approaches for modeling or specifying service systems.Postprint (published version

    Deriving Barbed Bisimulations for Bigraphical Reactive Systems

    Get PDF
    We study the definition of a general abstract notion of barbed bisimilarity for reactive systems on bigraphs. More precisely, given a bigraphical reactive system, we define the corresponding barbs from the contextual labels given by the IPO construction, in a general and systematic way. These barbs correspond to observe which names on the interface are actually involved in reactions (and how). As examples, we apply this construction to the (bigraphical representation of the) pi-calculus and of Mobile Ambients, and compare the resulting barbed equivalences with those previously known for these calculi

    On Barbs and Labels in Reactive Systems

    Get PDF
    Reactive systems (RSs) represent a meta-framework aimed at deriving behavioral congruences for those computational formalisms whose operational semantics is provided by reduction rules. RSs proved a flexible specification device, yet so far most of the efforts dealing with their behavioural semantics focused on idem pushouts (IPOs) and saturated (also known as dynamic) bisimulations. In this paper we introduce a novel, intermediate behavioural equivalence: L-bisimilarity, which is able to recast both its IPO and saturated counterparts. The equivalence is parametric with respect to a set L of RSs labels, and it is shown that under mild conditions on L it is indeed a congruence. Furthermore, L-bisimilarity can also recast the notion of barbed semantics for RSs, proposed by the same authors in a previous paper. In order to provide a suitable test-bed, we instantiate our proposal by addressing the semantics of (asynchronous) CCS and of the calculus of mobile ambients

    Variable binding, symmetric monoidal closed theories, and bigraphs

    Get PDF
    This paper investigates the use of symmetric monoidal closed (SMC) structure for representing syntax with variable binding, in particular for languages with linear aspects. In our setting, one first specifies an SMC theory T, which may express binding operations, in a way reminiscent from higher-order abstract syntax. This theory generates an SMC category S(T) whose morphisms are, in a sense, terms in the desired syntax. We apply our approach to Jensen and Milner's (abstract binding) bigraphs, which are linear w.r.t. processes. This leads to an alternative category of bigraphs, which we compare to the original.Comment: An introduction to two more technical previous preprints. Accepted at Concur '0

    On the Construction of Sorted Reactive Systems

    Get PDF
    We develop a theory of sorted bigraphical reactive systems. Every application of bigraphs in the literature has required an extension, a sorting, of pure bigraphs. In turn, every such application has required a redevelopment of the theory of pure bigraphical reactive systems for the sorting at hand. Here we present a general construction of sortings. The constructed sortings always sustain the behavioural theory of pure bigraphs (in a precise sense), thus obviating the need to redevelop that theory for each new application. As an example, we recover Milner’s local bigraphs as a sorting on pure bigraphs. Technically, we give our construction for ordinary reactive systems, then lift it to bigraphical reactive systems. As such, we give also a construction of sortings for ordinary reactive systems. This construction is an improvement over previous attempts in that it produces smaller and much more natural sortings, as witnessed by our recovery of local bigraphs as a sorting

    An Algebra of Hierarchical Graphs and its Application to Structural Encoding

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects. In particular, we propose the use of our graph formalism as a convenient way to describe configurations in process calculi equipped with inherently hierarchical features such as sessions, locations, transactions, membranes or ambients. The graph syntax can be seen as an intermediate representation language, that facilitates the encodings of algebraic specifications, since it provides primitives for nesting, name restriction and parallel composition. In addition, proving soundness and correctness of an encoding (i.e. proving that structurally equivalent processes are mapped to isomorphic graphs) becomes easier as it can be done by induction over the graph syntax

    Transition systems, link graphs and Petri nets

    Get PDF
    corecore