8,727 research outputs found

    Performance Assessment of Feature Detection Algorithms: A Methodology and Case Study on Corner Detectors

    Get PDF
    In this paper we describe a generic methodology for evaluating the labeling performance of feature detectors. We describe a method for generating a test set and apply the methodology to the performance assessment of three well-known corner detectors: the Kitchen-Rosenfeld, Paler et al. and Harris-Stephens corner detectors. The labeling deficiencies of each of these detectors is related to their discrimination ability between corners and various of the features which comprise the class of noncorners

    Strengthening the Effectiveness of Pedestrian Detection with Spatially Pooled Features

    Full text link
    We propose a simple yet effective approach to the problem of pedestrian detection which outperforms the current state-of-the-art. Our new features are built on the basis of low-level visual features and spatial pooling. Incorporating spatial pooling improves the translational invariance and thus the robustness of the detection process. We then directly optimise the partial area under the ROC curve (\pAUC) measure, which concentrates detection performance in the range of most practical importance. The combination of these factors leads to a pedestrian detector which outperforms all competitors on all of the standard benchmark datasets. We advance state-of-the-art results by lowering the average miss rate from 13%13\% to 11%11\% on the INRIA benchmark, 41%41\% to 37%37\% on the ETH benchmark, 51%51\% to 42%42\% on the TUD-Brussels benchmark and 36%36\% to 29%29\% on the Caltech-USA benchmark.Comment: 16 pages. Appearing in Proc. European Conf. Computer Vision (ECCV) 201

    HPatches: A benchmark and evaluation of handcrafted and learned local descriptors

    Full text link
    In this paper, we propose a novel benchmark for evaluating local image descriptors. We demonstrate that the existing datasets and evaluation protocols do not specify unambiguously all aspects of evaluation, leading to ambiguities and inconsistencies in results reported in the literature. Furthermore, these datasets are nearly saturated due to the recent improvements in local descriptors obtained by learning them from large annotated datasets. Therefore, we introduce a new large dataset suitable for training and testing modern descriptors, together with strictly defined evaluation protocols in several tasks such as matching, retrieval and classification. This allows for more realistic, and thus more reliable comparisons in different application scenarios. We evaluate the performance of several state-of-the-art descriptors and analyse their properties. We show that a simple normalisation of traditional hand-crafted descriptors can boost their performance to the level of deep learning based descriptors within a realistic benchmarks evaluation

    Unsupervised edge map scoring: a statistical complexity approach

    Full text link
    We propose a new Statistical Complexity Measure (SCM) to qualify edge maps without Ground Truth (GT) knowledge. The measure is the product of two indices, an \emph{Equilibrium} index E\mathcal{E} obtained by projecting the edge map into a family of edge patterns, and an \emph{Entropy} index H\mathcal{H}, defined as a function of the Kolmogorov Smirnov (KS) statistic. This new measure can be used for performance characterization which includes: (i)~the specific evaluation of an algorithm (intra-technique process) in order to identify its best parameters, and (ii)~the comparison of different algorithms (inter-technique process) in order to classify them according to their quality. Results made over images of the South Florida and Berkeley databases show that our approach significantly improves over Pratt's Figure of Merit (PFoM) which is the objective reference-based edge map evaluation standard, as it takes into account more features in its evaluation

    Graph Laplacian for Image Anomaly Detection

    Get PDF
    Reed-Xiaoli detector (RXD) is recognized as the benchmark algorithm for image anomaly detection; however, it presents known limitations, namely the dependence over the image following a multivariate Gaussian model, the estimation and inversion of a high-dimensional covariance matrix, and the inability to effectively include spatial awareness in its evaluation. In this work, a novel graph-based solution to the image anomaly detection problem is proposed; leveraging the graph Fourier transform, we are able to overcome some of RXD's limitations while reducing computational cost at the same time. Tests over both hyperspectral and medical images, using both synthetic and real anomalies, prove the proposed technique is able to obtain significant gains over performance by other algorithms in the state of the art.Comment: Published in Machine Vision and Applications (Springer

    Maximum-entropy Surrogation in Network Signal Detection

    Full text link
    Multiple-channel detection is considered in the context of a sensor network where raw data are shared only by nodes that have a common edge in the network graph. Established multiple-channel detectors, such as those based on generalized coherence or multiple coherence, use pairwise measurements from every pair of sensors in the network and are thus directly applicable only to networks whose graphs are completely connected. An approach introduced here uses a maximum-entropy technique to formulate surrogate values for missing measurements corresponding to pairs of nodes that do not share an edge in the network graph. The broader potential merit of maximum-entropy baselines in quantifying the value of information in sensor network applications is also noted.Comment: 4 pages, submitted to IEEE Statistical Signal Processing Workshop, August 201
    • …
    corecore