14 research outputs found

    Experimental Evaluation of Transmitted Signal Distortion Caused by Power Allocation in Inter-Cell Interference Coordination Techniques for LTE/LTE-A and 5G Systems

    Get PDF
    Error vector magnitude (EVM) and out-of-band emissions are key metrics for evaluating in-band and out-band distortions introduced by all potential non-idealities in the transmitters of wireless systems. As EVM is a measure of the quality of the modulated signal/symbols, LTE/LTE-A and 5G systems specify mandatory EVM requirements in transmission for each modulation scheme. This paper analyzes the influence of the mandatory satisfaction of EVM requirements on the design of radio resource management strategies (RRM) (link adaptation, inter-cell interference coordination), specifically in the downlink (DL). EVM depends on the non-idealities of the transmitter implementations, on the allocated power variations between the subcarriers and on the selected modulations. In the DL of LTE, link adaptation is usually executed by adaptive modulation and coding (AMC) instead of power control, but some flexibility in power allocation remains being used. LTE specifies some limits in the power dynamic ranges depending on the allocated modulation, which ensures the satisfaction of EVM requirements. However, the required recommendations concerning the allowed power dynamic range when inter-cell interference coordination (ICIC) and enhanced ICIC (eICIC) mechanisms (through power coordination) are out of specification, even though the EVM performance should be known to obtain the maximum benefit of these strategies. We perform an experimental characterization of the EVM in the DL under real and widely known ICIC implementation schemes. These studies demonstrate that an accurate analysis of EVM is required. It allows a better adjustment of the design parameters of these strategies, and also allows the redefinition of the main criteria to be considered in the implementation of the scheduler/link adaptation concerning the allocable modulation coding scheme (MCS) in each resource block. © 2013 IEEE

    Analysis of hybrid schedulers for CoMP resource allocation in LTE-Advanced SU-MIMO systems

    Get PDF
    Coordinated Multi Point transmission and reception (CoMP) has been considered as a promising technique to enhance system throughput performance by reducing inter-cell interference (ICI) in cell edge area. Past studies showed that Joint Processing (JP) transmission mode is capable to provide much better throughput performance benefits than Coordinated Scheduling/Beamforming (CS/CB) both in homogeneous and heterogeneous networks; however, the robust strategy of resource block (RB) allocation and scheduling algorithms has to be specifically designed for CoMP-JP in a MIMO-OFDMA system. In this paper, an intuitive algorithm will be investigated in order to reach the highest overall system throughput but keep same level of fairness performance at same time. We first analyze the threshold of reference signal strength to determine the operating region for CoMP-JP user selection, and then calculate the robust ratio of RB allocation for CoMP and non-CoMP users. In final stage, the hybrid schedulers adopted specifically for the unique characteristics of CoMP and non-CoMP users will be analyzed and compared. Our results show that the threshold of reference signal strength (λ,θ)(\lambda, \theta) should both be set at -1dB for CoMP operating region, and the parameter to the ratio of CoMP users should be set at γ=0.9\gamma = 0.9 for robust RB allocation

    Autonomous Component Carrier Selection for 4G Femtocells

    Get PDF
    corecore