12,232 research outputs found

    Deep Learning Relevance: Creating Relevant Information (as Opposed to Retrieving it)

    Full text link
    What if Information Retrieval (IR) systems did not just retrieve relevant information that is stored in their indices, but could also "understand" it and synthesise it into a single document? We present a preliminary study that makes a first step towards answering this question. Given a query, we train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all.Comment: Neu-IR '16 SIGIR Workshop on Neural Information Retrieval, July 21, 2016, Pisa, Ital

    LiveSketch: Query Perturbations for Guided Sketch-based Visual Search

    Get PDF
    LiveSketch is a novel algorithm for searching large image collections using hand-sketched queries. LiveSketch tackles the inherent ambiguity of sketch search by creating visual suggestions that augment the query as it is drawn, making query specification an iterative rather than one-shot process that helps disambiguate users' search intent. Our technical contributions are: a triplet convnet architecture that incorporates an RNN based variational autoencoder to search for images using vector (stroke-based) queries; real-time clustering to identify likely search intents (and so, targets within the search embedding); and the use of backpropagation from those targets to perturb the input stroke sequence, so suggesting alterations to the query in order to guide the search. We show improvements in accuracy and time-to-task over contemporary baselines using a 67M image corpus.Comment: Accepted to CVPR 201

    Language Transfer of Audio Word2Vec: Learning Audio Segment Representations without Target Language Data

    Full text link
    Audio Word2Vec offers vector representations of fixed dimensionality for variable-length audio segments using Sequence-to-sequence Autoencoder (SA). These vector representations are shown to describe the sequential phonetic structures of the audio segments to a good degree, with real world applications such as query-by-example Spoken Term Detection (STD). This paper examines the capability of language transfer of Audio Word2Vec. We train SA from one language (source language) and use it to extract the vector representation of the audio segments of another language (target language). We found that SA can still catch phonetic structure from the audio segments of the target language if the source and target languages are similar. In query-by-example STD, we obtain the vector representations from the SA learned from a large amount of source language data, and found them surpass the representations from naive encoder and SA directly learned from a small amount of target language data. The result shows that it is possible to learn Audio Word2Vec model from high-resource languages and use it on low-resource languages. This further expands the usability of Audio Word2Vec.Comment: arXiv admin note: text overlap with arXiv:1603.0098

    A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion

    Get PDF
    Users may strive to formulate an adequate textual query for their information need. Search engines assist the users by presenting query suggestions. To preserve the original search intent, suggestions should be context-aware and account for the previous queries issued by the user. Achieving context awareness is challenging due to data sparsity. We present a probabilistic suggestion model that is able to account for sequences of previous queries of arbitrary lengths. Our novel hierarchical recurrent encoder-decoder architecture allows the model to be sensitive to the order of queries in the context while avoiding data sparsity. Additionally, our model can suggest for rare, or long-tail, queries. The produced suggestions are synthetic and are sampled one word at a time, using computationally cheap decoding techniques. This is in contrast to current synthetic suggestion models relying upon machine learning pipelines and hand-engineered feature sets. Results show that it outperforms existing context-aware approaches in a next query prediction setting. In addition to query suggestion, our model is general enough to be used in a variety of other applications.Comment: To appear in Conference of Information Knowledge and Management (CIKM) 201
    corecore