10 research outputs found

    A hypothesize-and-verify framework for Text Recognition using Deep Recurrent Neural Networks

    Full text link
    Deep LSTM is an ideal candidate for text recognition. However text recognition involves some initial image processing steps like segmentation of lines and words which can induce error to the recognition system. Without segmentation, learning very long range context is difficult and becomes computationally intractable. Therefore, alternative soft decisions are needed at the pre-processing level. This paper proposes a hybrid text recognizer using a deep recurrent neural network with multiple layers of abstraction and long range context along with a language model to verify the performance of the deep neural network. In this paper we construct a multi-hypotheses tree architecture with candidate segments of line sequences from different segmentation algorithms at its different branches. The deep neural network is trained on perfectly segmented data and tests each of the candidate segments, generating unicode sequences. In the verification step, these unicode sequences are validated using a sub-string match with the language model and best first search is used to find the best possible combination of alternative hypothesis from the tree structure. Thus the verification framework using language models eliminates wrong segmentation outputs and filters recognition errors

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Scene Based Text Recognition From Natural Images and Classification Based on Hybrid CNN Models with Performance Evaluation

    Get PDF
    Similar to the recognition of captions, pictures, or overlapped text that typically appears horizontally, multi-oriented text recognition in video frames is challenging since it has high contrast related to its background. Multi-oriented form of text normally denotes scene text which makes text recognition further stimulating and remarkable owing to the disparaging features of scene text. Hence, predictable text detection approaches might not give virtuous outcomes for multi-oriented scene text detection. Text detection from any such natural image has been challenging since earlier times, and significant enhancement has been made recently to execute this task. While coming to blurred, low-resolution, and small-sized images, most of the previous research conducted doesn’t work well; hence, there is a research gap in that area. Scene-based text detection is a key area due to its adverse applications. One such primary reason for the failure of earlier methods is that the existing methods could not generate precise alignments across feature areas and targets for those images. This research focuses on scene-based text detection with the aid of YOLO based object detector and a CNN-based classification approach. The experiments were conducted in MATLAB 2019A, and the packages used were RESNET50, INCEPTIONRESNETV2, and DENSENET201. The efficiency of the proposed methodology - Hybrid resnet -YOLO procured maximum accuracy of 91%, Hybrid inceptionresnetv2 -YOLO of 81.2%, and Hybrid densenet201 -YOLO of 83.1% and was verified by comparing it with the existing research works Resnet50 of 76.9%, ResNet-101 of 79.5%, and ResNet-152 of 82%
    corecore