14,730 research outputs found

    Revisão taxonómica do género Calendula L. (Asteraceae - Calenduleae) na Península Ibérica e Marrocos

    Get PDF
    The genus Calendula L. (Asteraceae - Calenduleae) includes, depending on the author, 10 to 25 species, distributed mainly in the Mediterranean basin. The taxonomy of this genus is considered to be extremely difficult, due to a great morphological variability, doubtfull relevance of some of the characters used to distinguish its species (e.g. the life form: annual or perennial; the habit: erect or diffuse, shape of the leaves, indumentum, relative size of the capitula and colour of disc or ray florets, achene morphology), but also due to the hybridization and polyploidization. Despite the numerous studies that have been published, no agreement on the classification and characters used to discriminate between taxa has been reached. A taxonomic study of the genus Calendula was conducted for the Iberian Peninsula and Morocco, aiming at (1) access the morphological variability between and within taxa, (2) confirm the chromosome numbers, (3) increase the nuclear DNA content estimations, (4) re-evaluate taxa delimitations and circumscription, and (5) reassess, and redefine, the descriptions and characters useful to distinguish taxa. In order to achieve a satisfying taxonomic core, extensive fieldwork, detailed morphometric analysis, chorological, karyological and genome size studies were conducted. For the Iberian Peninsula, four species were recognized, including nine subspecies (between these two new subspecies were described). For Morocco, including some taxa from Algeria and Tunisia 13 species were recognized (two new species and a nomenclatural change), including 15 subspecies (among these eight new subspecies were described). To corroborate the results obtained and to evaluate the evolutionary relationships among taxa, phylogenetic studies using molecular methods, such as ITS, microsatellites or other molecular markers, should be used.O género Calendula L. (Asteraceae - Calenduleae) inclui, dependendo do autor, 10 a 25 espécies, distribuídas essencialmente na bacia do Mediterrâneo. A taxonomia deste género é considerada extremamente difícil, devido à grande variabilidade morfológica, discutivel relevância de alguns dos caracteres utilizados para distinguir suas espécies (por exemplo, a forma de vida: anual ou perene, o hábito: erecto ou difuso, a forma das folhas, o indumento, o tamanho e a cor dos capítulos e a morfologia dos aquénios), mas também devido à hibridização e poliploidização. Apesar dos inúmeros estudos que foram publicados, não foi alcançado um acordo sobre a classificação e os caracteres utilizados para discriminar as suas espécies. Um estudo taxonómico do género Calendula foi realizado para a Península Ibérica e Marrocos, com o objectivo de (1) verificar a variabilidade morfológica, (2) confirmar o número de cromossomas, (3) aumentar as estimativas de conteúdo em ADN, (4) reavaliar a delimitação e a circunscrição dos taxa, e (5) reavaliar e redefinir as descrições e caracteres úteis para os distinguir. Para alcançar uma robustês taxonómica satisfatória, foram realizados extensos trabalhos de campo, análise morfométrica detalhada, abordagens corológicas, cariológicas e quanto ao conteúdo em ADN. Para a Península Ibérica, quatro espécies foram reconhecidas, incluindo nove subespécies (entre essas duas novas subespécies foram descritas). Para Marrocos, incluindo alguns taxa da Argelia e Tunisia, foram reconhecidas 13 espécies (duas novas e uma mudança nomenclatural), incluindo 15 subespécies (entre essas oito novas subespécies foram descritas). Para corroborar os resultados obtidos e avaliar as relações evolutivas e filogenéticas entre os taxa, estudos que utilizem diferentes métodos moleculares, tais como ITS, microsatélites ou outros marcadores moleculares, devem ser utilizados.Apoio financeiro do Laboratório Associado CESAM - Centro de Estudos do Ambiente e do Mar (AMB/50017) financiado por fundos nacionais através da FCT/MCTES e cofinanciado pelo FEDER (POCI-01-0145-FEDER-007638), no âmbito do Acordo de Parceria PT2020, e Compete 2020Programa Doutoral em Biologi

    Pollution-induced community tolerance in freshwater biofilms – from molecular mechanisms to loss of community functions

    Get PDF
    Exposure to herbicides poses a threat to aquatic biofilms by affecting their community structure, physiology and function. These changes render biofilms to become more tolerant, but on the downside community tolerance has ecologic costs. A concept that addresses induced community tolerance to a pollutant (PICT) was introduced by Blanck and Wängberg (1988). The basic principle of the concept is that microbial communities undergo pollution-induced succession when exposed to a pollutant over a long period of time, which changes communities structurally and functionally and enhancing tolerance to the pollutant exposure. However, the mechanisms of tolerance and the ecologic consequences were hardly studied up to date. This thesis addresses the structural and functional changes in biofilm communities and applies modern molecular methods to unravel molecular tolerance mechanisms. Two different freshwater biofilm communities were cultivated for a period of five weeks, with one of the communities being contaminated with 4 μg L-1 diuron. Subsequently, the communities were characterized for structural and functional differences, especially focusing on their crucial role of photosynthesis. The community structure of the autotrophs was assessed using HPLC-based pigment analysis and their functional alterations were investigated using Imaging-PAM fluorometry to study photosynthesis and community oxygen profiling to determine net primary production. Then, the molecular fingerprints of the communities were measured with meta-transcriptomics (RNA-Seq) and GC-based community metabolomics approaches and analyzed with respect to changes in their molecular functions. The communities were acute exposed to diuron for one hour in a dose-response design, to reveal a potential PICT and uncover related adaptation to diuron exposure. The combination of apical and molecular methods in a dose-response design enabled the linkage of functional effects of diuron exposure and underlying molecular mechanisms based on a sensitivity analysis. Chronic exposure to diuron impaired freshwater biofilms in their biomass accrual. The contaminated communities particularly lost autotrophic biomass, reflected by the decrease in specific chlorophyll a content. This loss was associated with a change in the molecular fingerprint of the communities, which substantiates structural and physiological changes. The decline in autotrophic biomass could be due to a primary loss of sensitive autotrophic organisms caused by the selection of better adapted species in the course of chronic exposure. Related to this hypothesis, an increase in diuron tolerance has been detected in the contaminated communities and molecular mechanisms facilitating tolerance have been found. It was shown that genes of the photosystem, reductive-pentose phosphate cycle and arginine metabolism were differentially expressed among the communities and that an increased amount of potential antioxidant degradation products was found in the contaminated communities. This led to the hypothesis that contaminated communities may have adapted to oxidative stress, making them less sensitive to diuron exposure. Moreover, the photosynthetic light harvesting complex was altered and the photoprotective xanthophyll cycle was increased in the contaminated communities. Despite these adaptation strategies, the loss of autotrophic biomass has been shown to impair primary production. This impairment persisted even under repeated short-term exposure, so that the tolerance mechanisms cannot safeguard primary production as a key function in aquatic systems.:1. The effect of chemicals on organisms and their functions .............................. 1 1.1 Welcome to the anthropocene .......................................................................... 1 1.2 From cellular stress responses to ecosystem resilience ................................... 3 1.2.1 The individual pursuit for homeostasis ....................................................... 3 1.2.2 Stability from diversity ................................................................................. 5 1.3 Community ecotoxicology - a step forward in monitoring the effects of chemical pollution? ................................................................................................................. 6 1.4 Functional ecotoxicological assessment of microbial communities ................... 9 1.5 Molecular tools – the key to a mechanistic understanding of stressor effects from a functional perspective in microbial communities? ...................................... 12 2. Aims and Hypothesis ......................................................................................... 14 2.1 Research question .......................................................................................... 14 2.2 Hypothesis and outline .................................................................................... 15 2.3 Experimental approach & concept .................................................................. 16 2.3.1 Aquatic freshwater biofilms as model community ..................................... 16 2.3.2 Diuron as model herbicide ........................................................................ 17 2.3.3 Experimental design ................................................................................. 18 3. Structural and physiological changes in microbial communities after chronic exposure - PICT and altered functional capacity ................................................. 21 3.1 Introduction ..................................................................................................... 21 3.2 Methods .......................................................................................................... 23 3.2.1 Biofilm cultivation ...................................................................................... 23 3.2.2 Dry weight and autotrophic index ............................................................. 23 3.2.4 Pigment analysis of periphyton ................................................................. 23 3.2.4.1 In-vivo pigment analysis for community characterization ....................... 24 3.2.4.2 In-vivo pigment analysis based on Imaging-PAM fluorometry ............... 24 3.2.4.3 In-vivo pigment fluorescence for tolerance detection ............................. 26 3.2.4.4 Ex-vivo pigment analysis by high-pressure liquid-chromatography ....... 27 3.2.5 Community oxygen metabolism measurements ....................................... 28 3.3 Results and discussion ................................................................................... 29 3.3.1 Comparison of the structural community parameters ............................... 29 3.3.2 Photosynthetic activity and primary production of the communities after selection phase ................................................................................................. 33 3.3.3 Acquisition of photosynthetic tolerance .................................................... 34 3.3.4 Primary production at exposure conditions ............................................... 36 3.3.5 Tolerance detection in primary production ................................................ 37 3.4 Summary and Conclusion ........................................................................... 40 4. Community gene expression analysis by meta-transcriptomics ................... 41 4.1 Introduction to meta-transcriptomics ............................................................... 41 4.2. Methods ......................................................................................................... 43 4.2.1 Sampling and RNA extraction................................................................... 43 4.2.2 RNA sequencing analysis ......................................................................... 44 4.2.3 Data assembly and processing................................................................. 45 4.2.4 Prioritization of contigs and annotation ..................................................... 47 4.2.5 Sensitivity analysis of biological processes .............................................. 48 4.3 Results and discussion ................................................................................... 48 4.3.1 Characterization of the meta-transcriptomic fingerprints .......................... 49 4.3.2 Insights into community stress response mechanisms using trend analysis (DRomic’s) ......................................................................................................... 51 4.3.3 Response pattern in the isoform PS genes .............................................. 63 4.5 Summary and conclusion ................................................................................ 65 5. Community metabolome analysis ..................................................................... 66 5.1 Introduction to community metabolomics ........................................................ 66 5.2 Methods .......................................................................................................... 68 5.2.1 Sampling, metabolite extraction and derivatisation................................... 68 5.2.2 GC-TOF-MS analysis ............................................................................... 69 5.2.3 Data processing and statistical analysis ................................................... 69 5.3 Results and discussion ................................................................................... 70 5.3.1 Characterization of the metabolic fingerprints .......................................... 70 5.3.2 Difference in the metabolic fingerprints .................................................... 71 5.3.3 Differential metabolic responses of the communities to short-term exposure of diuron ............................................................................................................ 73 5.4 Summary and conclusion ................................................................................ 78 6. Synthesis ............................................................................................................. 79 6.1 Approaches and challenges for linking molecular data to functional measurements ...................................................................................................... 79 6.2 Methods .......................................................................................................... 83 6.2.1 Summary on the data ............................................................................... 83 6.2.2 Aggregation of molecular data to index values (TELI and MELI) .............. 83 6.2.3 Functional annotation of contigs and metabolites using KEGG ................ 83 6.3 Results and discussion ................................................................................... 85 6.3.1 Results of aggregation techniques ........................................................... 85 6.3.2 Sensitivity analysis of the different molecular approaches and endpoints 86 6.3.3 Mechanistic view of the molecular stress responses based on KEGG functions ............................................................................................................ 89 6.4 Consolidation of the results – holistic interpretation and discussion ............... 93 6.4.1 Adaptation to chronic diuron exposure - from molecular changes to community effects.............................................................................................. 93 6.4.2 Assessment of the ecological costs of Pollution-induced community tolerance based on primary production ............................................................. 94 6.5 Outlook ............................................................................................................ 9

    The enterovirus genome can be translated in an IRES-independent manner that requires the initiation factors eIF2A/eIF2D

    Get PDF
    RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses

    Identifizierung prädiktiver und prognostischer Biomarker in unterschiedlichen Tumorkompartimenten des ösophagealen Adenokarzinoms

    Get PDF
    Das ösophageale Adenokarzinom zeigt eine global steigende Inzidenz und hat mit einer 5-Jahres-Überlebensrate von weniger als 25% eine schlechte Prognose. Personalisierte Therapieansätze sind selten und prognostische/prädiktive Biomarker des Tumormikromilieus sind unzureichend charakterisiert. Die kumulative Promotion nähert sich dieser Problematik in drei unterschiedlichen Schwerpunkten. 1. Zur Identifizierung Kompartiment-spezifischer Biomarker wurde eine Methode entwickelt, welche als kostengünstige Alternative zum sc-Seq Expressionsprofile individueller Zelltypen generiert. Dabei erfolgt die Extraktion der RNA nicht aus Einzelzellen, sondern aus flowzytometrisch-getrennten Zellkompartimenten. Die Separation der Proben in Epithelzellen, Immunzellen und Fibroblasten wurde durch verschiedene Verfahren validiert und eine suffiziente Ausbeute an RNA auch für kleine Gewebemengen gezeigt. 2. Biomarker des Immunzellkompartiments als therapeutische Angriffspunkte wurden in einem Patientenkollektiv von bis zu 551 Patienten auf ihre Bedeutung beim EAC überprüft. Es zeigte sich eine Expression der Immuncheckpoints LAG3, VISTA und IDO auf TILs durch IHC und RNA-Sonden basierte Verfahren in einem relevanten Anteil (LAG3: 11,4%, VISTA: 29%, IDO: 52,6%). Es konnte eine prognostisch günstige Bedeutung der VISTA, LAG3 und IDO Expression gezeigt werden. Durch den Vergleich von Genexpressionsprofilen aus therapienaiven und vorbehandelten Tumoren konnte zudem ein immunsuppressiver Effekt von neoadjuvanten Therapiekonzepten auf das Tumormikromilieu des EACs gezeigt werden. Dabei kam es zur verminderten Expression von Checkpoints und Anzahl TILs nach (Radio-) Chemotherapie. 3. Im Tumorzellkompartiment wurde die Rolle von Amplifikationen in ErbB-Rezeptor abhängigen Signalwegen durch FISH-Technik und Immunhistochemie evaluiert. Es fanden sich KRAS Amplifikationen in 17,1%, PIK3CA Amplifikationen in 5% sowie eine HER2/neu-Überexpression in 14,9% der untersuchten Tumore

    Shuffled ATG8 interacting motifs form an ancestral bridge between UFMylation and autophagy

    Get PDF
    UFMylation involves the covalent modification of substrate proteins with UFM1 (Ubiquitin‐fold modifier 1) and is important for maintaining ER homeostasis. Stalled translation triggers the UFMylation of ER‐bound ribosomes and activates C53‐mediated autophagy to clear toxic polypeptides. C53 contains noncanonical shuffled ATG8‐interacting motifs (sAIMs) that are essential for ATG8 interaction and autophagy initiation. However, the mechanistic basis of sAIM‐mediated ATG8 interaction remains unknown. Here, we show that C53 and sAIMs are conserved across eukaryotes but secondarily lost in fungi and various algal lineages. Biochemical assays showed that the unicellular alga Chlamydomonas reinhardtii has a functional UFMylation pathway, refuting the assumption that UFMylation is linked to multicellularity. Comparative structural analyses revealed that both UFM1 and ATG8 bind sAIMs in C53, but in a distinct way. Conversion of sAIMs into canonical AIMs impaired binding of C53 to UFM1, while strengthening ATG8 binding. Increased ATG8 binding led to the autoactivation of the C53 pathway and sensitization of Arabidopsis thaliana to ER stress. Altogether, our findings reveal an ancestral role of sAIMs in UFMylation‐dependent fine‐tuning of C53‐mediated autophagy activation

    Wheat blast: The last enemy of hunger fighters

    Get PDF
    Abstract Effective strategies for disease control are crucial for sustaining world food production and ensuring food security for the population. Wheat blast, a disease caused by the pathogen Magnaporthe oryzae pathotype Triticum, has been a concern for cereal producers and researchers due to its aggressiveness and rapid expansion. To solve this problem, the development of resistant varieties with durable resistance is an effective, economical and sustainable way to control the disease. Conventional breeding can be aided by several molecular tools to facilitate the mining of many sources of resistance, such as R genes and QTLs. The identification of new sources of resistance, whether in the wheat crop or in other cereals are an opportunity for efficient wheat breeding through the application of different techniques. Since this disease is still poorly studied in wheat, knowledge of the rice Magnaporthe pathotype may be adapted to control wheat blast. Thus, genetic mapping, molecular markers, transgenic approaches, and genomic editing are valuable technologies to fight wheat blast. This review aimed to compile the biotechnological alternatives available to accelerate the development of improved cultivars for resistance to wheat blast

    Anuário científico da Escola Superior de Tecnologia da Saúde de Lisboa - 2021

    Get PDF
    É com grande prazer que apresentamos a mais recente edição (a 11.ª) do Anuário Científico da Escola Superior de Tecnologia da Saúde de Lisboa. Como instituição de ensino superior, temos o compromisso de promover e incentivar a pesquisa científica em todas as áreas do conhecimento que contemplam a nossa missão. Esta publicação tem como objetivo divulgar toda a produção científica desenvolvida pelos Professores, Investigadores, Estudantes e Pessoal não Docente da ESTeSL durante 2021. Este Anuário é, assim, o reflexo do trabalho árduo e dedicado da nossa comunidade, que se empenhou na produção de conteúdo científico de elevada qualidade e partilhada com a Sociedade na forma de livros, capítulos de livros, artigos publicados em revistas nacionais e internacionais, resumos de comunicações orais e pósteres, bem como resultado dos trabalhos de 1º e 2º ciclo. Com isto, o conteúdo desta publicação abrange uma ampla variedade de tópicos, desde temas mais fundamentais até estudos de aplicação prática em contextos específicos de Saúde, refletindo desta forma a pluralidade e diversidade de áreas que definem, e tornam única, a ESTeSL. Acreditamos que a investigação e pesquisa científica é um eixo fundamental para o desenvolvimento da sociedade e é por isso que incentivamos os nossos estudantes a envolverem-se em atividades de pesquisa e prática baseada na evidência desde o início dos seus estudos na ESTeSL. Esta publicação é um exemplo do sucesso desses esforços, sendo a maior de sempre, o que faz com que estejamos muito orgulhosos em partilhar os resultados e descobertas dos nossos investigadores com a comunidade científica e o público em geral. Esperamos que este Anuário inspire e motive outros estudantes, profissionais de saúde, professores e outros colaboradores a continuarem a explorar novas ideias e contribuir para o avanço da ciência e da tecnologia no corpo de conhecimento próprio das áreas que compõe a ESTeSL. Agradecemos a todos os envolvidos na produção deste anuário e desejamos uma leitura inspiradora e agradável.info:eu-repo/semantics/publishedVersio

    Neuroanatomical and gene expression features of the rabbit accessory olfactory system. Implications of pheromone communication in reproductive behaviour and animal physiology

    Get PDF
    Mainly driven by the vomeronasal system (VNS), pheromone communication is involved in many species-specific fundamental innate socio-sexual behaviors such as mating and fighting, which are essential for animal reproduction and survival. Rabbits are a unique model for studying chemocommunication due to the discovery of the rabbit mammary pheromone, but paradoxically there has been a lack of knowledge regarding its VNS pathway. In this work, we aim at filling this gap by approaching the system from an integrative point of view, providing extensive anatomical and genomic data of the rabbit VNS, as well as pheromone-mediated reproductive and behavioural studies. Our results build strong foundation for further translational studies which aim at implementing the use of pheromones to improve animal production and welfare

    OLIG2 neural progenitor cell development and fate in Down syndrome

    Full text link
    Down syndrome (DS) is caused by triplication of human chromosome 21 (HSA21) and is the most common genetic form of intellectual disability. It is unknown precisely how triplication of HSA21 results in the intellectual disability, but it is thought that the global transcriptional dysregulation caused by trisomy 21 perturbs multiple aspects of neurodevelopment that cumulatively contribute to its etiology. While the characteristics associated with DS can arise from any of the genes triplicated on HSA21, in this work we focus on oligodendrocyte transcription factor 2 (OLIG2). The progeny of neural progenitor cells (NPCs) expressing OLIG2 are likely to be involved in many of the cellular changes underlying the intellectual disability in DS. To explore the fate of OLIG2+ neural progenitors, we took advantage of two distinct models of DS, the Ts65Dn mouse model and induced pluripotent stem cells (iPSCs) derived from individuals with DS. Our results from these two systems identified multiple perturbations in development in the cellular progeny of OLIG2+ NPCs. In Ts65Dn, we identified alterations in neurons and glia derived from the OLIG2 expressing progenitor domain in the ventral spinal cord. There were significant differences in the number of motor neurons and interneurons present in the trisomic lumbar spinal cord depending on age of the animal pointing both to a neurodevelopment and a neurodegeneration phenotype in the Ts65Dn mice. Of particular note, we identified changes in oligodendrocyte (OL) maturation in the trisomic mice that are dependent on spatial location and developmental origin. In the dorsal corticospinal tract, there were significantly fewer mature OLs in the trisomic mice, and in the lateral funiculus we observed the opposite phenotype with more mature OLs being present in the trisomic animals. We then transitioned our studies into iPSCs where we were able to pattern OLIG2+ NPCs to either a spinal cord-like or a brain-like identity and study the OL lineage that differentiated from each progenitor pool. Similar to the region-specific dysregulation found in the Ts65Dn spinal cord, we identified perturbations in trisomic OLs that were dependent on whether the NPCs had been patterned to a brain-like or spinal cord-like fate. In the spinal cord-like NPCs, there was no difference in the proportion of cells expressing either OLIG2 or NKX2.2, the two transcription factors whose co-expression is essential for OL differentiation. Conversely, in the brain-like NPCs, there was a significant increase in OLIG2+ cells in the trisomic culture and a decrease in NKX2.2 mRNA expression. We identified a sonic hedgehog (SHH) signaling based mechanism underlying these changes in OLIG2 and NKX2.2 expression in the brain-like NPCs and normalized the proportion of trisomic cells expressing the transcription factors to euploid levels by modulating the activity of the SHH pathway. Finally, we continued the differentiation of the brain-like and spinal cord-like NPCs to committed OL precursor cells (OPCs) and allowed them to mature. We identified an increase in OPC production in the spinal cord-like trisomic culture which was not present in the brain-like OPCs. Conversely, we identified a maturation deficit in the brain-like trisomic OLs that was not present in the spinal cord-like OPCs. These results underscore the importance of regional patterning in characterizing changes in cell differentiation and fate in DS. Together, the findings presented in this work contribute to the understanding of the cellular and molecular etiology of the intellectual disability in DS and in particular the contribution of cells differentiated from OLIG2+ progenitors

    Nitrite and insulin lower the oxygen cost of ATP synthesis in skeletal muscle cells by pleiotropic stimulation of glycolysis

    Get PDF
    Dietary nitrate lowers the oxygen cost of submaximal exercise, but precise mechanistic insight into how this occurs is lacking. Research suggests that dietary nitrate may render oxidative ATP synthesis more efficient, but evidence is inconclusive at present. This thesis aimed to establish how nitrite (a reduced form of nitrate) affects the bioenergetics of cultured skeletal muscle cells. Comparison between the acute effects of nitrite and insulin, a hormonal regulator of muscle function that increases mitochondrial efficiency, was explored to assess possible mechanistic overlap. Calculation of real-time intracellular ATP synthesis rates from simultaneous oxygen consumption and medium acidification measurements revealed the effects of sodium nitrite and insulin on intact rat (L6) myoblasts and myotubes. These extracellular flux data were also used to determine how mitochondrial and glycolytic ATP supply is used to fuel ATP-demanding processes. The data presented in this thesis revealed that both nitrite and insulin acutely stimulate glycolytic ATP synthesis. This stimulation occurs without significant mitochondrial ATP supply changes, thus increasing the glycolytic index of myocytes. Consequently, nitrite and insulin lower the oxygen cost of cellular ATP supply. Notably, insulin lowers oxygen consumption linked to mitochondrial proton leak, thus increasing mitochondrial efficiency. Nitrite does not improve coupling efficiency in myoblasts or myotubes. Further investigations revealed that stimulation of glycolytic ATP supply is not secondary to increased glucose availability. In myotubes, glycolytic stimulation persists in the presence of a mitochondrial uncoupler, suggesting that glycolysis is increased directly. In myoblasts, stimulation is annulled by uncoupler, suggesting that glycolysis increases indirectly, via increased ATP consumption. The molecular targets of nitrite and insulin remain unclear, but the data exclude stimulation of protein synthesis. Together, the data demonstrate that nitrite and insulin lower the oxygen cost of ATP synthesis in skeletal muscle cells by pleiotropic stimulation of glycolysis. The data inform the ongoing debate regarding the mechanism by which dietary nitrate lowers the oxygen cost of exercise, suggesting a push toward a more glycolytic phenotype. Such mechanistic insight is crucial for achieving the full translational potential of dietary nitrate
    corecore