8 research outputs found

    An Almost Tight RMR Lower Bound for Abortable Test-And-Set

    Get PDF
    We prove a lower bound of Omega(log n/log log n) for the remote memory reference (RMR) complexity of abortable test-and-set (leader election) in the cache-coherent (CC) and the distributed shared memory (DSM) model. This separates the complexities of abortable and non-abortable test-and-set, as the latter has constant RMR complexity [Wojciech Golab et al., 2010]. Golab, Hendler, Hadzilacos and Woelfel [Wojciech M. Golab et al., 2012] showed that compare-and-swap can be implemented from registers and test-and-set objects with constant RMR complexity. We observe that a small modification to that implementation is abortable, provided that the used test-and-set objects are atomic (or abortable). As a consequence, using existing efficient randomized wait-free implementations of test-and-set [George Giakkoupis and Philipp Woelfel, 2012], we obtain randomized abortable compare-and-swap objects with almost constant (O(log^* n)) RMR complexity

    Randomized Mutual Exclusion with Constant Amortized RMR Complexity on the DSM

    Get PDF
    International audienceIn this paper we settle an open question by determining the remote memory reference (RMR) complexity of randomized mutual exclusion, on the distributed shared memory model (DSM) with atomic registers, in a weak but natural (and stronger than oblivious) adversary model. In particular, we present a mutual exclusion algorithm that has constant expected amortized RMR complexity and is deterministically deadlock free. Prior to this work, no randomized algorithm with o(log n/ log log n) RMR complexity was known for the DSM model. Our algorithm is fairly simple, and compares favorably with one by Bender and Gilbert (FOCS 2011) for the CC model, which has expected amortized RMR complexity O(log^2 log n) and provides only probabilistic deadlock freedom

    Lower Bounds for Shared-Memory Leader Election Under Bounded Write Contention

    Get PDF
    This paper gives tight logarithmic lower bounds on the solo step complexity of leader election in an asynchronous shared-memory model with single-writer multi-reader (SWMR) registers, for both deterministic and randomized obstruction-free algorithms. The approach extends to lower bounds for deterministic and randomized obstruction-free algorithms using multi-writer registers under bounded write concurrency, showing a trade-off between the solo step complexity of a leader election algorithm, and the worst-case number of stalls incurred by a processor in an execution

    Constant RMR Solutions to Reader Writer Synchronization

    Get PDF
    We study Reader-Writer Exclusion, a well-known variant of the Mutual Exclusion problem where processes are divided into two classes--readers and writers--and multiple readers can be in the Critical Section (CS) at the same time, although no process may be in the CS at the same time as a writer. Since readers don\u27t conflict with each other, they should not obstruct each other. Specifically, the concurrent entering property must be satisfied: if all writers are in the remainder section, each reader should be able to enter the CS in a bounded number of its own steps. Three versions of the Reader-Writer Exclusion problem are commonly studied--one where writers have priority over readers, another where readers have priority, and the last where neither class has priority over the other and no process may starve. To ensure high performance on Cache-Coherent (CC) and Distributed Shared Memory (DSM) multiprocessors, algorithms should be designed to generate as few remote memory references (RMRs) as possible. The ideal would be to achieve constant RMR complexity, i.e., the worst case number of RMRs that a process generates in order to enter and exit the CS once is a constant, independent of the number of processes. Constant RMR complexity algorithms have existed for Mutual Exclusion for two decades, but none exists for Reader-Writer Exclusion. Danek and Hadzilacos\u27 lower bound proof implies that it is impossible to achieve sublinear RMR complexity for DSM machines. For CC machines, the best existing bound, also due to Danek and Hadzilacos , is O(log n), where n is the number of processes. In this work, we present the first constant RMR complexity algorithms for all three versions of the Reader-Writer Exclusion problem (for CC machines)

    Notes on Theory of Distributed Systems

    Full text link
    Notes for the Yale course CPSC 465/565 Theory of Distributed Systems

    RMR-Efficient Randomized Abortable Mutual Exclusion

    No full text
    Bibliography: p. 161-16
    corecore