12 research outputs found

    Iterative Singular Tube Hard Thresholding Algorithms for Tensor Completion

    Full text link
    Due to the explosive growth of large-scale data sets, tensors have been a vital tool to analyze and process high-dimensional data. Different from the matrix case, tensor decomposition has been defined in various formats, which can be further used to define the best low-rank approximation of a tensor to significantly reduce the dimensionality for signal compression and recovery. In this paper, we consider the low-rank tensor completion problem. We propose a novel class of iterative singular tube hard thresholding algorithms for tensor completion based on the low-tubal-rank tensor approximation, including basic, accelerated deterministic and stochastic versions. Convergence guarantees are provided along with the special case when the measurements are linear. Numerical experiments on tensor compressive sensing and color image inpainting are conducted to demonstrate convergence and computational efficiency in practice
    corecore