52 research outputs found

    Vision-enhanced Peg-in-Hole for automotive body parts using semantic image segmentation and object detection

    Get PDF
    Artificial Intelligence (AI) is an enabling technology in the context of Industry 4.0. In particular, the automotive sector is among those who can benefit most of the use of AI in conjunction with advanced vision techniques. The scope of this work is to integrate deep learning algorithms in an industrial scenario involving a robotic Peg-in-Hole task. More in detail, we focus on a scenario where a human operator manually positions a carbon fiber automotive part in the workspace of a 7 Degrees of Freedom (DOF) manipulator. To cope with the uncertainty on the relative position between the robot and the workpiece, we adopt a three stage strategy. The first stage concerns the Three-Dimensional (3D) reconstruction of the workpiece using a registration algorithm based on the Iterative Closest Point (ICP) paradigm. Such a procedure is integrated with a semantic image segmentation neural network, which is in charge of removing the background of the scene to improve the registration. The adoption of such network allows to reduce the registration time of about 28.8%. In the second stage, the reconstructed surface is compared with a Computer Aided Design (CAD) model of the workpiece to locate the holes and their axes. In this stage, the adoption of a Convolutional Neural Network (CNN) allows to improve the holes’ position estimation of about 57.3%. The third stage concerns the insertion of the peg by implementing a search phase to handle the remaining estimation errors. Also in this case, the use of the CNN reduces the search phase duration of about 71.3%. Quantitative experiments, including a comparison with a previous approach without both the segmentation network and the CNN, have been conducted in a realistic scenario. The results show the effectiveness of the proposed approach and how the integration of AI techniques improves the success rate from 84.5% to 99.0%

    Collaborative and Cooperative Robotics Applications using Visual Perception

    Get PDF
    The objective of this Thesis is to develop novel integrated strategies for collaborative and cooperative robotic applications. Commonly, industrial robots operate in structured environments and in work-cell separated from human operators. Nowadays, collaborative robots have the capacity of sharing the workspace and collaborate with humans or other robots to perform complex tasks. These robots often operate in an unstructured environment, whereby they need sensors and algorithms to get information about environment changes. Advanced vision and control techniques have been analyzed to evaluate their performance and their applicability to industrial tasks. Then, some selected techniques have been applied for the first time to an industrial context. A Peg-in-Hole task has been chosen as first case study, since it has been extensively studied but still remains challenging: it requires accuracy both in the determination of the hole poses and in the robot positioning. Two solutions have been developed and tested. Experimental results have been discussed to highlight the advantages and disadvantages of each technique. Grasping partially known objects in unstructured environments is one of the most challenging issues in robotics. It is a complex task and requires to address multiple subproblems, in order to be accomplished, including object localization and grasp pose detection. Also for this class of issues some vision techniques have been analyzed. One of these has been adapted to be used in industrial scenarios. Moreover, as a second case study, a robot-to-robot object handover task in a partially structured environment and in the absence of explicit communication between the robots has been developed and validated. Finally, the two case studies have been integrated in two real industrial setups to demonstrate the applicability of the strategies to solving industrial problems

    From CAD models to soft point cloud labels: An automatic annotation pipeline for cheaply supervised 3D semantic segmentation

    Full text link
    We propose a fully automatic annotation scheme which takes a raw 3D point cloud with a set of fitted CAD models as input, and outputs convincing point-wise labels which can be used as cheap training data for point cloud segmentation. Compared to manual annotations, we show that our automatic labels are accurate while drastically reducing the annotation time, and eliminating the need for manual intervention or dataset-specific parameters. Our labeling pipeline outputs semantic classes and soft point-wise object scores which can either be binarized into standard one-hot-encoded labels, thresholded into weak labels with ambiguous points left unlabeled, or used directly as soft labels during training. We evaluate the label quality and segmentation performance of PointNet++ on a dataset of real industrial point clouds and Scan2CAD, a public dataset of indoor scenes. Our results indicate that reducing supervision in areas which are more difficult to label automatically is beneficial, compared to the conventional approach of naively assigning a hard "best guess" label to every point

    Fast Object Pose Estimation Using Adaptive Threshold for Bin-Picking

    Get PDF
    Robotic bin-picking is a common process in modern manufacturing, logistics, and warehousing that aims to pick-up known or unknown objects with random poses out of a bin by using a robot-camera system. Rapid and accurate object pose estimation pipelines have become an escalating issue for robot picking in recent years. In this paper, a fast 6-DoF (degrees of freedom) pose estimation pipeline for random bin-picking is proposed in which the pipeline is capable of recognizing different types of objects in various cluttered scenarios and uses an adaptive threshold segment strategy to accelerate estimation and matching for the robot picking task. Particularly, our proposed method can be effectively trained with fewer samples by introducing the geometric properties of objects such as contour, normal distribution, and curvature. An experimental setup is designed with a Kinova 6-Dof robot and an Ensenso industrial 3D camera for evaluating our proposed methods with respect to four different objects. The results indicate that our proposed method achieves a 91.25% average success rate and a 0.265s average estimation time, which sufficiently demonstrates that our approach provides competitive results for fast objects pose estimation and can be applied to robotic random bin-picking tasks

    Cutting Pose Prediction from Point Clouds

    Get PDF

    Robotics Dexterous Grasping: The Methods Based on Point Cloud and Deep Learning

    Get PDF
    Dexterous manipulation, especially dexterous grasping, is a primitive and crucial ability of robots that allows the implementation of performing human-like behaviors. Deploying the ability on robots enables them to assist and substitute human to accomplish more complex tasks in daily life and industrial production. A comprehensive review of the methods based on point cloud and deep learning for robotics dexterous grasping from three perspectives is given in this paper. As a new category schemes of the mainstream methods, the proposed generation-evaluation framework is the core concept of the classification. The other two classifications based on learning modes and applications are also briefly described afterwards. This review aims to afford a guideline for robotics dexterous grasping researchers and developers

    Autonomous Scene Understanding, Motion Planning, and Task Execution for Geometrically Adaptive Robotized Construction Work

    Full text link
    The construction industry suffers from such problems as high cost, poor quality, prolonged duration, and substandard safety. Robots have the potential to help alleviate such problems by becoming construction co-workers, yet they are seldom found operating on today’s construction sites. This is primarily due to the industry’s unstructured nature, substantial scale, and loose tolerances, which present additional challenges for robot operation. To help construction robots overcome such challenges and begin functioning as useful partners in human-robot construction teams, this research focuses on advancing two fundamental capabilities: enabling a robot to determine where it is located as it moves about a construction site, and enabling it to determine the actual pose and geometry of its workpieces so it can adapt its work plan and perform work. Specifically, this research first explores the use of a camera-marker sensor system for construction robot localization. To provide a mobile construction robot with the ability to estimate its own pose, a camera-marker sensor system was developed that is affordable, reconfigurable, and functional in GNSS-denied locations, such as urban areas and indoors. Excavation was used as a case study construction activity, where bucket tooth pose served as the key point of interest. The sensor system underwent several iterations of design and testing, and was found capable of estimating bucket tooth position with centimeter-level accuracy. This research also explores a framework to enable a construction robot to leverage its sensors and Building Information Model (BIM) to perceive and autonomously model the actual pose and geometry of its workpieces. Autonomous motion planning and execution methods were also developed and incorporated into the adaptive framework to enable a robot to adapt its work plan to the circumstances it encounters and perform work. The adaptive framework was implemented on a real robot and evaluated using joint filling as a case study construction task. The robot was found capable of identifying the true pose and geometry of a construction joint with an accuracy of 0.11 millimeters and 1.1 degrees. The robot also demonstrated the ability to autonomously adapt its work plan and successfully fill the joint. In all, this research is expected to serve as a basis for enabling robots to function more effectively in challenging construction environments. In particular, this work focuses on enabling robots to operate with greater functionality and versatility using methods that are generalizable to a range of construction activities. This research establishes the foundational blocks needed for humans and robots to leverage their respective strengths and function together as effective construction partners, which will lead to ubiquitous collaborative human-robot teams operating on actual construction sites, and ultimately bring the industry closer to realizing the extensive benefits of robotics.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149785/1/klundeen_1.pd

    Design of autonomous robotic system for removal of porcupine crab spines

    Get PDF
    Among various types of crabs, the porcupine crab is recognized as a highly potential crab meat resource near the off-shore northwest Atlantic ocean. However, their long, sharp spines make it difficult to be manually handled. Despite the fact that automation technology is widely employed in the commercial seafood processing industry, manual processing methods still dominate in today’s crab processing, which causes low production rates and high manufacturing costs. This thesis proposes a novel robot-based porcupine crab spine removal method. Based on the 2D image and 3D point cloud data captured by the Microsoft Azure Kinect 3D RGB-D camera, the crab’s 3D point cloud model can be reconstructed by using the proposed point cloud processing method. After that, the novel point cloud slicing method and the 2D image and 3D point cloud combination methods are proposed to generate the robot spine removal trajectory. The 3D model of the crab with the actual dimension, robot working cell, and endeffector are well established in Solidworks [1] and imported into the Robot Operating System (ROS) [2] simulation environment for methodology validation and design optimization. The simulation results show that both the point cloud slicing method and the 2D and 3D combination methods can generate a smooth and feasible trajectory. Moreover, compared with the point cloud slicing method, the 2D and 3D combination method is more precise and efficient, which has been validated in the real experiment environment. The automated experiment platform, featuring a 3D-printed end-effector and crab model, has been successfully set up. Results from the experiments indicate that the crab model can be accurately reconstructed, and the central line equations of each spine were calculated to generate a spine removal trajectory. Upon execution with a real robot arm, all spines were removed successfully. This thesis demonstrates the proposed method’s capability to achieve expected results and its potential for application in various manufacturing processes such as painting, polishing, and deburring for parts of different shapes and materials
    • …
    corecore