3,336 research outputs found

    Visual slam in dynamic environments

    Get PDF
    El problema de localización y construcción visual simultánea de mapas (visual SLAM por sus siglas en inglés Simultaneous Localization and Mapping) consiste en localizar una cámara en un mapa que se construye de manera online. Esta tecnología permite la localización de robots en entornos desconocidos y la creación de un mapa de la zona con los sensores que lleva incorporados, es decir, sin contar con ninguna infraestructura externa. A diferencia de los enfoques de odometría en los cuales el movimiento incremental es integrado en el tiempo, un mapa permite que el sensor se localice continuamente en el mismo entorno sin acumular deriva.Asumir que la escena observada es estática es común en los algoritmos de SLAM visual. Aunque la suposición estática es válida para algunas aplicaciones, limita su utilidad en escenas concurridas del mundo real para la conducción autónoma, los robots de servicio o realidad aumentada y virtual entre otros. La detección y el estudio de objetos dinámicos es un requisito para estimar con precisión la posición del sensor y construir mapas estables, útiles para aplicaciones robóticas que operan a largo plazo.Las contribuciones principales de esta tesis son tres: 1. Somos capaces de detectar objetos dinámicos con la ayuda del uso de la segmentación semántica proveniente del aprendizaje profundo y el uso de enfoques de geometría multivisión. Esto nos permite lograr una precisión en la estimación de la trayectoria de la cámara en escenas altamente dinámicas comparable a la que se logra en entornos estáticos, así como construir mapas en 3D que contienen sólo la estructura del entorno estático y estable. 2. Logramos alucinar con imágenes realistas la estructura estática de la escena detrás de los objetos dinámicos. Esto nos permite ofrecer mapas completos con una representación plausible de la escena sin discontinuidades o vacíos ocasionados por las oclusiones de los objetos dinámicos. El reconocimiento visual de lugares también se ve impulsado por estos avances en el procesamiento de imágenes. 3. Desarrollamos un marco conjunto tanto para resolver el problema de SLAM como el seguimiento de múltiples objetos con el fin de obtener un mapa espacio-temporal con información de la trayectoria del sensor y de los alrededores. La comprensión de los objetos dinámicos circundantes es de crucial importancia para los nuevos requisitos de las aplicaciones emergentes de realidad aumentada/virtual o de la navegación autónoma. Estas tres contribuciones hacen avanzar el estado del arte en SLAM visual. Como un producto secundario de nuestra investigación y para el beneficio de la comunidad científica, hemos liberado el código que implementa las soluciones propuestas.<br /

    Sensors, SLAM and Long-term Autonomy: A Review

    Get PDF
    Simultaneous Localization and Mapping, commonly known as SLAM, has been an active research area in the field of Robotics over the past three decades. For solving the SLAM problem, every robot is equipped with either a single sensor or a combination of similar/different sensors. This paper attempts to review, discuss, evaluate and compare these sensors. Keeping an eye on future, this paper also assesses the characteristics of these sensors against factors critical to the long-term autonomy challenge

    A multisensor SLAM for dense maps of large scale environments under poor lighting conditions

    Get PDF
    This thesis describes the development and implementation of a multisensor large scale autonomous mapping system for surveying tasks in underground mines. The hazardous nature of the underground mining industry has resulted in a push towards autonomous solutions to the most dangerous operations, including surveying tasks. Many existing autonomous mapping techniques rely on approaches to the Simultaneous Localization and Mapping (SLAM) problem which are not suited to the extreme characteristics of active underground mining environments. Our proposed multisensor system has been designed from the outset to address the unique challenges associated with underground SLAM. The robustness, self-containment and portability of the system maximize the potential applications.The multisensor mapping solution proposed as a result of this work is based on a fusion of omnidirectional bearing-only vision-based localization and 3D laser point cloud registration. By combining these two SLAM techniques it is possible to achieve some of the advantages of both approaches – the real-time attributes of vision-based SLAM and the dense, high precision maps obtained through 3D lasers. The result is a viable autonomous mapping solution suitable for application in challenging underground mining environments.A further improvement to the robustness of the proposed multisensor SLAM system is a consequence of incorporating colour information into vision-based localization. Underground mining environments are often dominated by dynamic sources of illumination which can cause inconsistent feature motion during localization. Colour information is utilized to identify and remove features resulting from illumination artefacts and to improve the monochrome based feature matching between frames.Finally, the proposed multisensor mapping system is implemented and evaluated in both above ground and underground scenarios. The resulting large scale maps contained a maximum offset error of ±30mm for mapping tasks with lengths over 100m

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Visual SLAM based on dynamic object removal

    Get PDF
    Visual simultaneous localization and mapping (SLAM) is the core of intelligent robot navigation system. Many traditional SLAM algorithms assume that the scene is static. When a dynamic object appears in the environment, the accuracy of visual SLAM can degrade due to the interference of dynamic features of moving objects. This strong hypothesis limits the SLAM applications for service robot or driverless car in the real dynamic environment. In this paper, a dynamic object removal algorithm that combines object recognition and optical flow techniques is proposed in the visual SLAM framework for dynamic scenes. The experimental results show that our new method can detect moving object effectively and improve the SLAM performance compared to the state of the art methods
    corecore