3,022 research outputs found

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    A case of implementing RFID-based real-time shop-floor material management for household electrical appliance manufacturers

    Get PDF
    Radio Frequency Identification (RFID) technologies provide automatic and accurate object data capturing capability and enable real-time object visibility and traceability. Potential benefits have been widely reported for improving manufacturing shop-floor management. However, reports on how such potentials come true in real-life shop-floor daily operations are very limited. As a result, skeptics overwhelm enthusiasm. This paper contributes to the re-vitalization of RFID efforts in manufacturing industries by presenting a real-life case study of applying RFID for managing material distribution in a complex assembly shop-floor at a large air conditioner manufacturer. The case study discusses how technical, social and organizational issues have been addressed throughout the project within the company. It is hoped that insights and lessons gained be generalized for future efforts across household electrical appliance manufacturers that share similar shop-floor. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Radio Frequency Identification (RFID) based wireless manufacturing systems, a review

    Get PDF
    Radio frequency identification (RFID) is one of the most promising technological innovations in order to track and trace products as well as material flow in manufacturing systems. High Frequency (HF) and Ultra High Frequency (UHF) RFID systems can track a wide range of products in the part production process via radio waves with level of accuracy and reliability.   As a result, quality and transparency of data across the supply chain can be accurately obtained in order to decrease time and cost of part production. Also, process planning and part production scheduling can be modified using the advanced RFID systems in part manufacturing process. Moreover, to decrease the cost of produced parts, material handling systems in the advanced assembly lines can be analyzed and developed by using the RFID. Smart storage systems can increase efficiency in part production systems by providing accurate information from the stored raw materials and products for the production planning systems. To increase efficiency of energy consumption in production processes, energy management systems can be developed by using the RFID-sensor networks. Therefore, smart factories and intelligent manufacturing systems as industry 4.0 can be introduced by using the developed RFID systems in order to provide new generation of part production systems. In this paper, a review of RFID based wireless manufacturing systems is presented and future research works are also suggested. It has been observed that the research filed can be moved forward by reviewing and analyzing recent achievements in the published papers

    RFID-enabled real-time manufacturing information tracking infrastructure for extended enterprises

    Get PDF
    In extended enterprises, real-time manufacturing information tracking plays an important role and aims to provide the right information to the right person at the right time in the right format to achieve optimal production management among the involved enterprises. However, many enterprises are caused by lack of timely, accurate and consistent manufacturing data. The laggard information transfer flow and the unmatched information transfer method bring extended enterprises much more uncertainty and unknowingness. This paper proposes a RFID-enabled real-time manufacturing information tracking infrastructure (RTMITI) to address the real-time manufacturing data capturing and manufacturing information processing methods for extended enterprises. Following the proposed infrastructure, the traditional manufacturing resources such as employees, machines and materials are equipped with RFID devices (Readers and Tags) to build the real-time data capturing environment. In addition, a series of manufacturing information processing methods are established to calculate and track the real-time manufacturing information such as real-time manufacturing cost, progress, WIP (Work-in-progress) inventory etc. in parts/assemblies/products at machines/shop floors/enterprises/ extended enterprises levels. Finally, a case study is given to demonstrate the developed framework and corresponding methodologies. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Smart manufacturing for industry 4.0 using Radio Frequency Identification (RFID) technology

    Get PDF
    Industry 4.0 (I4.0) presents a unique challenge of efficiently transforming traditional manufacturing to smart and autonomous systems.Integrating manufacturing systems, materials, machinery, operators, products and consumers, improve interconnectivity and traceability across the entire product life cycle in order to ensure the horizontal and vertical integration of networked Smart Manufacturing (SM) systems. Manufacturing functions of Material Handling (MH)-control, storage, protection and transport of raw materials, work in process (WIP) and finished products- throughout a manufacturing and distribution process will need a revamp in ways they are currently being carried in order to transition them into the SM era. Radio Frequency Identification (RFID), an Automated Identification Data Capture (AIDC) technology increasingly being used to enhance MH functions in the (SM) industry, due to opportunities it presents for item tracking, out of sight data capturing, navigation and space mapping abilities. The technology readiness level of RFID has presented many implementation challenges as progress is being made to fully integrate the technology into the preexisting MH functions. Recently, many researchers in academia and industry have described various methods of using RFID for improving and efficiently carrying out MH functions as a gradual transition is being made into I4.0 era. This paper reviews and categorize research finding regarding RFID application developments according to various MH functions in SM, tabulates how various I4.0 enablers are needed to transform various traditional manufacturing functions into SM. It aims to let more experts know the current research status of RFID technology and provide some guidance for future research

    RFID-enabled real-time manufacturing execution system for discrete manufacturing: Software design and implementation

    Get PDF
    Discrete manufacturing (DM) refers to produce products in non-sequential processes so as to respond to market and customer requirements quickly under limited lead-time. However, in shop-floor management, DM companies usually confront challenges such as information gaps between different manufacturing units, slow responsiveness to customer changes, and poor visualization. The main reasons are lacking of efficient manufacturing data collection manners and software to support shop-floor management. This paper introduces an RFID-enabled real-time manufacturing execution system (RT-MES) for improving DM shop-floor management level in the perspective of illustrating the RT-MES software design and implementation. Several contributions from this paper are significant. First, a framework of RFID-enabled RT-MES is proposed, which is generic and helpful for enterprise information system (EIS) construction. Second, a plug-universal database-aided design (PUDAD) concept and its realization are elaborated, which could reduce RT-MES development and implementation cycle. Third, an interface middleware is reported to enable RT-MES real-time intercommunication with other EISs such as SAP ERP. Fourth, a real-life case study describes how RT-MES to enhance a typical DM firm's shop-floor management, which can be referenced by other DM companies when they initiate and implement RFID-enabled solutions. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Conference on Networking, Sensing and Control (ICNSC 2011), Delft, the Netherlands, 11-13 April 2011. In Proceedings of ICNSC, 2011, p. 311-31

    Sensor-enabled PCBs to aid right first time manufacture through defect prediction

    Get PDF
    © 2014 IEEE. Prevention of defects can reduce waste and aid lean strategies such as right first time manufacture. The prediction of defects leads to prevention; however accurate prediction requires a high understanding of the domain and mechanics of each defect. For a prediction simulation to adapt to a manufacturing line's conditions requires timely information about the products being manufactured. In this paper, research into the addition of a sensory circuit to a PCB in order to monitor defects through its manufacture into a PCBA is outlined. Manual handling and the number of thermal cycles are attributors to many of a product's potential defects. The use of an accelerometer and temperature sensor in a circuit alongside a processor and RFID chip is presented. The use of RFID allows the board to communicate to the manufacturing line, increasing the current state of intelligence for this type of product. The use of an RFID chip also allows data storage for both manufacturing information as well as sensory information. This intelligence capability could be added to the PCB in one of two ways; embedding within the layers of the board or by integrating into a pallet or carrier which the PCB will be associated with throughout its manufacture
    • …
    corecore