5,063 research outputs found

    RFID-based Hospital Real-time Patient Management System

    Full text link
    In a health care context, the use RFID (Radio Frequency Identification) technology can be employed for not only bringing down health care costs but also facilitate automating and streamlining patient identification processes in hospitals and use of mobile devices like PDA, smart phones, for design a health care management systems. In this paper, we outline a RFID model for designing a system in the health care. An application of the architecture is described in the area of RFID-based Real-time Hospital Patien

    Leveraging RFID in hospitals: patient life cycle and mobility perspectives

    Get PDF
    The application of Radio Frequency Identification (RFID) to patient care in hospitals and healthcare facilities has only just begun to be accepted. This article develops a set of frameworks based on patient life cycle and time-and-motion perspectives for how RFID can be leveraged atop existing information systems to offer many benefits for patient care and hospital operations. It examines how patients are processed from admission to discharge, and considers where RFID can be applied. From a time-and-motion perspective, it shows how hospitals can apply RFID in three ways: fixed RFID readers interrogate mobile objects; mobile, handheld readers interrogate fixed objects; and mobile, handheld readers interrogate mobile objects. Implemented properly, RFID can significantly aid the medical staff in performing their duties. It can greatly reduce the need for manual entry of records, increase security for both patient and hospital, and reduce errors in administering medication. Hospitals are likely to encounter challenges, however, when integrating the technology into their day-to-day operations. What we present here can help hospital administrators determine where RFID can be deployed to add the most value

    A Privacy Preserving Framework for RFID Based Healthcare Systems

    Get PDF
    RFID (Radio Frequency IDentification) is anticipated to be a core technology that will be used in many practical applications of our life in near future. It has received considerable attention within the healthcare for almost a decade now. The technology’s promise to efficiently track hospital supplies, medical equipment, medications and patients is an attractive proposition to the healthcare industry. However, the prospect of wide spread use of RFID tags in the healthcare area has also triggered discussions regarding privacy, particularly because RFID data in transit may easily be intercepted and can be send to track its user (owner). In a nutshell, this technology has not really seen its true potential in healthcare industry since privacy concerns raised by the tag bearers are not properly addressed by existing identification techniques. There are two major types of privacy preservation techniques that are required in an RFID based healthcare system—(1) a privacy preserving authentication protocol is required while sensing RFID tags for different identification and monitoring purposes, and (2) a privacy preserving access control mechanism is required to restrict unauthorized access of private information while providing healthcare services using the tag ID. In this paper, we propose a framework (PriSens-HSAC) that makes an effort to address the above mentioned two privacy issues. To the best of our knowledge, it is the first framework to provide increased privacy in RFID based healthcare systems, using RFID authentication along with access control technique

    A (digital) finger on the pulse

    Get PDF
    Complex Event Processing (CEP) is a computer-based technique used to track, analyse and process data in real-time (as an event happens). It establishes correlations between streams of information and matches to defined behaviour

    Towards Vision-Based Smart Hospitals: A System for Tracking and Monitoring Hand Hygiene Compliance

    Get PDF
    One in twenty-five patients admitted to a hospital will suffer from a hospital acquired infection. If we can intelligently track healthcare staff, patients, and visitors, we can better understand the sources of such infections. We envision a smart hospital capable of increasing operational efficiency and improving patient care with less spending. In this paper, we propose a non-intrusive vision-based system for tracking people's activity in hospitals. We evaluate our method for the problem of measuring hand hygiene compliance. Empirically, our method outperforms existing solutions such as proximity-based techniques and covert in-person observational studies. We present intuitive, qualitative results that analyze human movement patterns and conduct spatial analytics which convey our method's interpretability. This work is a step towards a computer-vision based smart hospital and demonstrates promising results for reducing hospital acquired infections.Comment: Machine Learning for Healthcare Conference (MLHC

    Benefits of connecting rfid and lean principles in health care

    Get PDF
    The performance management process in health care is far behind compared to the manufacturing and service industries. Although nowadays the health care organizations are able to deal with a greater rank diseases, their cost, quality and delivery has essentially not improved significantly, and the difference with the other industries even seems to have increased. As opposed to this situation health care has a tremendous opportunity to deploy lean principles to reduce internal/external costs, improve patient safety, increase profits, reduce litigation and decrease the dependence on Government and Insurance. The application of these principles is being facilitated by the use of the new technologies. A new technology allowing personnel to constantly "see" what's happening with regards to patients schedule, backlog, workflow, inventory levels, resource utilization, quality, etc., is Radio Frequency Identification (RFID). The aim of this paper is to analyse the benefits that can be derived from the joint use of lean principles and RFID technology in health care

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Ambulance service operational improvement

    Get PDF
    This document is the accepted manuscript version of a Published Work that appeared in final form in International Paramedic Practice copyright © MA Healthcare, after peer review and technical editing by the Publisher. To access the final edited version see http://www.internationaljpp.com/cgi-bin/go.pl/library/article.cgi?uid=100396;article=IPP_3_3_61_63Since the start of industrialisation in the beginning of the previous century, processes, and technology have evolved drastically. Technology that had been developed for a specific application was found to open new horizons in other domains. A good example is the use of sonar technology on military submarines which eventually found medical applications in medical imaging (Oakley, 1986). The paramedic profession is still considered to be a relatively young profession, and although the clinical scope of practice of ambulance staff has widened there have been few noticeable and significant changes in the way Ambulance Services operate as public service providers. There is, however, great variation in the way pre-hospital emergency care provision is delivered and organised from country to country due for example to historical, cultural, financial, and geographical factors. Other industries are significantly more driven by profit, hence efficiency and reliability are aspects that have a direct and measurable financial impact and it acts as a driver for further developments.Peer reviewedSubmitted Versio

    Use of location data for the surveillance, analysis, and optimization of clinical processes

    Get PDF
    Thesis (S.M.)--Harvard-MIT Division of Health Sciences and Technology, 2006.Includes bibliographical references (leaves 33-35).Location tracking systems in healthcare produce a wealth of data applicable across many aspects of care and management. However, since dedicated location tracking systems, such as the oft mentioned RFID tracking system, are still sparsely deployed, a number of other data sources may be utilized to serve as a proxy for physical location, such as barcodes and manual timestamp entry, and may be better suited to indicate progress through clinical workflows. INCOMING!, a web-based platform that monitors and tracks patient progress from the operating room to the post-anesthesia care unit (PACU), is one such system that utilizes manual timestamps routinely entered as standard process of care in the operating room in order to track a patient's progress through the post-operative period. This integrated real time system facilitates patient flow between the PACU and the surgical ward and eases PACU workload by reducing the effort of discharging patients.(cont.) We have also developed a larger-scale integrated system for perioperative processes that integrates perioperative data from anesthesia and surgical devices and operating room (OR) / hospital information systems, and projects the real-time integrated data as a single, unified, easy to visualize display. The need to optimize perioperative throughput creates a demand for integration of the datastreams and for timely data presentation. The system provides improved context-sensitive information display, improved real-time monitoring of physiological data, real-time access to readiness information, and improved workflow management. These systems provide improved data access and utilization, providing context-aware applications in healthcare that are aware of a user's location, environment, needs, and goals.by Mark A. Meyer.S.M
    corecore