999 research outputs found

    The role of logistics in enhancing competitive advantage in global logistics organization

    Get PDF
    Abstract: Customer demands and increased competition create significant complexity for logistics organizations. Global logistics organizations are seeking the advantage of cost management, increased productivity and competitiveness. Companies that want to remain in business have to respond strategically and to fulfill the needs of customers. The objectives of the study are to determine the role of logistics in a global organization and to determine the relationship between applying continuous improvement and adoption of technology in enhancing competitive advantage in logistics. The study commences with a literature review to explore improvement methodologies and the adoption of information technology in logistics. The literature study discussed Value Stream Mapping as a lean tool and simulation as a tool to aid in decision making. The study narrowed to the warehouse operation of a global logistics organization...M.Phil. (Engineering Management

    Tracking RFID

    Get PDF
    RFID-Radio Frequency Identification-is a powerful enabling technology with a wide range of potential applications. Its proponents initially overhyped its capabilities and business case: RFID deployment is proceeding along a much slower and less predictable trajectory than was initially thought. Nonetheless, in the end it is plausible that we will find ourselves moving in the direction of a world with pervasive RFID: a world in which objects\u27 wireless self-identification will become much more nearly routine, and networked devices will routinely collect and process the resulting information. RFID-equipped goods and documents present privacy threats: they may reveal information about themselves, and hence about the people carrying them, wirelessly to people whom the subjects might not have chosen to inform. That information leakage follows individuals, and reveals how they move through space. Not only does the profile that RFID technology helps construct contain information about where the subject is and has been, but RFID signifiers travel with the subject in the physical world, conveying information to devices that otherwise would not recognize it and that can take actions based on that information. RFID implementations, thus, can present three related privacy threats, which this article categorizes as surveillance, profiling, and action. RFID privacy consequences will differ in different implementations. It would be a mistake to conclude that an RFID implementation will pose no meaningful privacy threat because a tag does not directly store personally identifiable information, instead containing only a pointer to information contained in a separate database. Aside from any privacy threats presented by the database proprietor, privacy threats from third parties will depend on the extent to which those third parties can buy, barter, or otherwise gain database access. Where a tag neither points to nor carries personal identifying information, the extent of the privacy threat will depend in part on the degree to which data collectors will be able to link tag numbers with personally identifying information. Yet as profiling accelerates in the modem world, aided by the automatic, networked collection of information, information compiled by one data collector will increasingly be available to others as well; linking persistent identifiers to personally identifying information may turn out to be easy. Nor are sophisticated access controls and other cryptographic protections a complete answer to RFID privacy threats. The cost of those protections will make them impractical for many applications, though, and even with more sophisticated technology, security problems will remain. This article suggests appropriate government and regulatory responses to two important categories of RFID implementation. It concludes with a way of looking at, and an agenda for further research on, wireless identification technology more generally

    RFID Modeling in Healthcare

    Get PDF

    Wireless innovation for smart independent living

    Get PDF

    A new algorithm based CSP framework for RFID network planning

    Get PDF
    International audienceThe huge growth of industrial society requires the deployment of radio frequency identification networks on a large scale. This necessitates the installation of a large number of radio frequency identification components (readers, tags, middleware and others). As a consequence, the cost and complexity of networks are increasing due to the large number of readers to be installed. Finding the optimal number, placement and parameters of readers to provide a high quality of service for radio frequency identification systems is a critical problem. A good planning affords a basic need for radio frequency identification networks, such as coverage, load balance and interference between readers. This problem is famous in the literature as a radio frequency identification network planning problem. All the proposed approaches in the literature have been based on meta-heuristics. In this paper, we design a new algorithm, called the RNP-CSP algorithm based on the constraint satisfaction problem framework to solve the radio frequency identification network planning problem. The performance evaluation shows that the RNP-CSP algorithm is more efficient than PS 2 O , GPSO and VNPSO-RNP

    Potential effects of RFID technology on internal RTIs' supply chain performance : a case study of "Swire Oilfield Services"

    Get PDF
    Confidential until 23 May 202

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Perspectives and approaches for the internet of things

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresThis thesis was developed based on a scenario in which a CEO of a certain company asked the author to conduct an exploratory work evaluating the potential opportunities and limitations of this emerging area described as the future of the Internet, the Internet of Things (IoT). The objective is thus to provide the reader with a wide view of the vital points for the implementation and exploitation of the IoT, a technology that promises to deliver a new and wider range of applications to the society. In this subject there is a need to gather and organize information produced by several researchers and contributors. Due to the fact of being a new area and researchers work independently of each other, the work is scattered and inconsistencies can be found among different projects and publications. As such, in a first stage some definitions are provided and an attempt to clarify concepts is made. To support and emphasize the exponential growth of IoT, a brief historical overview is provided to the reader. This overview is based on the new trends and expectations that arise every day through news, potential businesses and also in important tools such as Google Trends. Several examples of applications in the context of the IoT, illustrate the benefits, not only in terms of society, but also for business opportunities, safety, and well-being. The main areas of interest to achieve the IoT such as: hardware, software, modeling, methods of connection, security and integration are studied in this work, in order to provide some insight into current strong and weak points. As the Internet of Things become a matter of large interest, various research groups are active in exploring and organizing projects in this area. Some of these projects, namely the ones considered the most important, are also presented in this thesis. Taking into account the facts surrounding this new technology, it becomes quite important to bring them together, clarifying them and trying to open new perspectives for further studies and improvements. Finally, in order to allow a practical evaluation of the technology, a prototype is developed around the connection of an intelligent object – a small mobile robot – to the Internet. A set of conclusions and future work directions are then presented which take into account the findings of the bibliographic analysis as well as the acquired experience with the implementation of the prototype
    corecore