6,751 research outputs found

    A Recofigurable Tri-Band Interconnect for Future Network-On-Chip

    Get PDF
    The scaling of CMOS feature sizes has yielded the capability of integrating heterogeneous intellectual properties (IPs) like graphics processing units (GPUs), digital signal processors (DSPs) and central processing units (CPUs) on a single die. The collection of multiple IPs on a single die presents a problem of reliable communication due to congestion. The infrastructure that facilitates and manages communication among IPs is referred to as a network-on-chip (NoC). Its ultimate goal should be low latency with negligible power and area consumption. Unfortunately, as CMOS feature sizes have been scaling smaller, this has exacerbated latency and signal degradation due to increasing on-chip channel resistance. Furthermore, contemporary interfaces use baseband-only signaling and have critical limitations like exponential energy consumption, limited bandwidth and non-reconfigurable data access.;In this work, we propose an energy efficient tri-band (baseband + 2 RF bands) signaling interface that is capable of simultaneous bi-directional communication and reconfigurable data access. Additionally, communication is accomplished through a shared transmission line which reduces the overall number of global interconnections. As a result, this reduces area consumption and mitigates interconnection complexity. The primary signicance of this interconnect configuration compared to contemporary designs is an increase of bandwidth and energy efficiency.;The interconnect design is composed of a baseband transceiver and two RF (10Ghz and 20GHz) transceivers. The RF transceivers utilize amplitude-shift keying (ASK) modulation scheme. ASK modulation allows ease of circuit design, but most importantly it can be used for noncoherent communication, which we implemented in this system. Noncoherent ASK modulation is area conservative and power efficient since there is no longer a need for power-hungry frequency synthesizers. Moreover, noncoherent ASK demodulation accomplishes direct-down conversation through a passive self-mixer for additional power savings.;The results from our work show that a multi-band interconnect is a suitable remedy for future NoC communication that has been reaching its bandwidth limitation with baseband-only signaling. In conclusion, this work demonstrates a sustainable balance of energy efficiency and increased bandwidth for future on-chip interconnect designs

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Extending systems-on-chip to the third dimension : performance, cost and technological tradeoffs.

    Get PDF
    Because of the today's market demand for high-performance, high-density portable hand-held applications, electronic system design technology has shifted the focus from 2-D planar SoC single-chip solutions to different alternative options as tiled silicon and single-level embedded modules as well as 3-D integration. Among the various choices, finding an optimal solution for system implementation dealt usually with cost, performance and other technological trade-off analysis at the system conceptual level. It has been identified that the decisions made within the first 20% of the total design cycle time will ultimately result up to 80% of the final product cost. In this paper, we discuss appropriate and realistic metric for performance and cost trade-off analysis both at system conceptual level (up-front in the design phase) and at implementation phase for verification in the three-dimensional integration. In order to validate the methodology, two ubiquitous electronic systems are analyzed under various implementation schemes and discuss the pros and cons of each of them

    System, Circuit, And Method For Testing An Interconnect In A Multi-chip Substrate

    Get PDF
    A system for testing interconnects in multi-chip modules including a radio frequency resonator having a resonant circuit with a relatively high quality factor, the output of the resonant circuit being attached to a probe. Electrically coupled to the resonant circuit output is an apparatus to analyze the voltage signal output. The probe is applied to one end of an interconnect. When the probe is applied, the resonant frequency of the resonant circuit and the magnitude of the frequency response are altered due to the additional loading created by the interconnect. Due to the relatively high quality factor of the resonant circuit, the magnitude of the frequency response of the altered resonant circuit is measurably distinct from a predetermined reference magnitude at a predetermined reference frequency, thus indicating the existence of a defect. Additionally, the type of defect that exists is ascertainable by determining whether the resonant frequency of the altered resonant circuit is greater or less than the reference frequency by examining, for example, the phase response.Georgia Tech Research Corporatio

    Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors

    Full text link
    We report an optical link on silicon using micrometer-scale ring-resonator enhanced silicon modulators and waveguide-integrated germanium photodetectors. We show 3 Gbps operation of the link with 0.5 V modulator voltage swing and 1.0 V detector bias. The total energy consumption for such a link is estimated to be ~120 fJ/bit. Such compact and low power monolithic link is an essential step towards large-scale on-chip optical interconnects for future microprocessors

    Cycle-accurate evaluation of reconfigurable photonic networks-on-chip

    Get PDF
    There is little doubt that the most important limiting factors of the performance of next-generation Chip Multiprocessors (CMPs) will be the power efficiency and the available communication speed between cores. Photonic Networks-on-Chip (NoCs) have been suggested as a viable route to relieve the off- and on-chip interconnection bottleneck. Low-loss integrated optical waveguides can transport very high-speed data signals over longer distances as compared to on-chip electrical signaling. In addition, with the development of silicon microrings, photonic switches can be integrated to route signals in a data-transparent way. Although several photonic NoC proposals exist, their use is often limited to the communication of large data messages due to a relatively long set-up time of the photonic channels. In this work, we evaluate a reconfigurable photonic NoC in which the topology is adapted automatically (on a microsecond scale) to the evolving traffic situation by use of silicon microrings. To evaluate this system's performance, the proposed architecture has been implemented in a detailed full-system cycle-accurate simulator which is capable of generating realistic workloads and traffic patterns. In addition, a model was developed to estimate the power consumption of the full interconnection network which was compared with other photonic and electrical NoC solutions. We find that our proposed network architecture significantly lowers the average memory access latency (35% reduction) while only generating a modest increase in power consumption (20%), compared to a conventional concentrated mesh electrical signaling approach. When comparing our solution to high-speed circuit-switched photonic NoCs, long photonic channel set-up times can be tolerated which makes our approach directly applicable to current shared-memory CMPs
    corecore