123 research outputs found

    Overview of positioning technologies from fitness-to-purpose point of view

    Get PDF
    Even though Location Based Services (LBSs) are being more and more widely-used and this shows a promising future, there are still many challenges to deal with, such as privacy, reliability, accuracy, cost of service, power consumption and availability. There is still no single low-cost positioning technology which provides position of its users seamlessly indoors and outdoors with an acceptable level of accuracy and low power consumption. For this reason, fitness of positioning service to the purpose of LBS application is an important parameter to be considered when choosing the most suitable positioning technology for an LBS. This should be done for any LBS application, since each application may need different requirements. Some location-based applications, such as location-based advertisements or Location-Based Social Networking (LBSN), do not need very accurate positioning input data, while for some others, e.g. navigation and tracking services, highly-accurate positioning is essential. This paper evaluates different positioning technologies from fitness-to-purpose point of view for two different applications, public transport information and family/friend tracking

    Indoor location based services challenges, requirements and usability of current solutions

    Get PDF
    Indoor Location Based Services (LBS), such as indoor navigation and tracking, still have to deal with both technical and non-technical challenges. For this reason, they have not yet found a prominent position in people’s everyday lives. Reliability and availability of indoor positioning technologies, the availability of up-to-date indoor maps, and privacy concerns associated with location data are some of the biggest challenges to their development. If these challenges were solved, or at least minimized, there would be more penetration into the user market. This paper studies the requirements of LBS applications, through a survey conducted by the authors, identifies the current challenges of indoor LBS, and reviews the available solutions that address the most important challenge, that of providing seamless indoor/outdoor positioning. The paper also looks at the potential of emerging solutions and the technologies that may help to handle this challenge

    Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements

    Full text link
    We present a new method to accurately locate persons indoors by fusing inertial navigation system (INS) techniques with active RFID technology. A foot-mounted inertial measuring units (IMUs)-based position estimation method, is aided by the received signal strengths (RSSs) obtained from several active RFID tags placed at known locations in a building. In contrast to other authors that integrate IMUs and RSS with a loose Kalman filter (KF)-based coupling (by using the residuals of inertial- and RSS-calculated positions), we present a tight KF-based INS/RFID integration, using the residuals between the INS-predicted reader-to-tag ranges and the ranges derived from a generic RSS path-loss model. Our approach also includes other drift reduction methods such as zero velocity updates (ZUPTs) at foot stance detections, zero angular-rate updates (ZARUs) when the user is motionless, and heading corrections using magnetometers. A complementary extended Kalman filter (EKF), throughout its 15-element error state vector, compensates the position, velocity and attitude errors of the INS solution, as well as IMU biases. This methodology is valid for any kind of motion (forward, lateral or backward walk, at different speeds), and does not require an offline calibration for the user gait. The integrated INS+RFID methodology eliminates the typical drift of IMU-alone solutions (approximately 1% of the total traveled distance), resulting in typical positioning errors along the walking path (no matter its length) of approximately 1.5 m

    Multi sensor system for pedestrian tracking and activity recognition in indoor environments

    Get PDF
    The widespread use of mobile devices and the rise of Global Navigation Satellite Systems (GNSS) have allowed mobile tracking applications to become very popular and valuable in outdoor environments. However, tracking pedestrians in indoor environments with Global Positioning System (GPS)-based schemes is still very challenging. Along with indoor tracking, the ability to recognize pedestrian behavior and activities can lead to considerable growth in location-based applications including pervasive healthcare, leisure and guide services (such as, hospitals, museums, airports, etc.), and emergency services, among the most important ones. This paper presents a system for pedestrian tracking and activity recognition in indoor environments using exclusively common off-the-shelf sensors embedded in smartphones (accelerometer, gyroscope, magnetometer and barometer). The proposed system combines the knowledge found in biomechanical patterns of the human body while accomplishing basic activities, such as walking or climbing stairs up and down, along with identifiable signatures that certain indoor locations (such as turns or elevators) introduce on sensing data. The system was implemented and tested on Android-based mobile phones. The system detects and counts steps with an accuracy of 97% and 96:67% in flat floor and stairs, respectively; detects user changes of direction and altitude with 98:88% and 96:66% accuracy, respectively; and recognizes the proposed human activities with a 95% accuracy. All modules combined lead to a total tracking accuracy of 91:06% in common human motion indoor displacement

    Advanced Pedestrian Positioning System to Smartphones and Smartwatches

    Get PDF
    In recent years, there has been an increasing interest in the development of pedestrian navigation systems for satellite-denied scenarios. The popularization of smartphones and smartwatches is an interesting opportunity for reducing the infrastructure cost of the positioning systems. Nowadays, smartphones include inertial sensors that can be used in pedestrian dead-reckoning (PDR) algorithms for the estimation of the user's position. Both smartphones and smartwatches include WiFi capabilities allowing the computation of the received signal strength (RSS). We develop a new method for the combination of RSS measurements from two different receivers using a Gaussian mixture model. We also analyze the implication of using a WiFi network designed for communication purposes in an indoor positioning system when the designer cannot control the network configuration. In this work, we design a hybrid positioning system that combines inertial measurements, from low-cost inertial sensors embedded in a smartphone, with RSS measurements through an extended Kalman filter. The system has been validated in a real scenario, and results show that our system improves the positioning accuracy of the PDR system thanks to the use of two WiFi receivers. The designed system obtains an accuracy up to 1.4 m in a scenario of 6000 m2

    Easing the survey burden: Quantitative assessment of low-cost signal surveys for indoor positioning

    Get PDF
    © 2016 IEEE. Indoor positioning through signal fingerprinting is a popular choice since it requires little or no additional infrastructure. However, the initial creation and subsequent maintenance of the signal maps remains a challenge since traditional manual surveying is not scalable. In this work we look at the use of path surveys, which attempt to construct the signal maps from a sparse set of fingerprints collected while a person walks through a space. As such, the survey points rarely provide a uniform coverage of the space of interest. We quantitatively evaluate path surveys with reference to a detailed manual survey using smartphone-grade equipment. We compare both the individual maps (generated using Gaussian Process regression) and their collective positioning performance. Our results are for both WiFi and Bluetooth Low Energy signals. We show that a path survey can provide maps of equivalent quality to a manual survey if a series of guidelines we provide are followed

    An indoor pedestrian localisation system with self-calibration capability

    Get PDF
    The Global Positioning System (GPS), a space-based system, employs dozens of satellites to provide location determination and navigation services around the world. However, due to the constraints to the power consuming and long-distance transmission, the strength of the GPS signal received on the mobile device is weak. Errors of the detection of the line-of-sight (LOS) propagated components of the signals are expected to be high if the users are in urban areas or in buildings, since obstacles in the surrounding environments could attenuate the LOS propagated components of the GPS signals significantly, but might upfade the multi-path components (constructive multi-path effect). Therefore, GPS should be replaced by other techniques for providing localisation services in urban areas or, especially, in indoor environments. Among all the candidates, received signal strength (RSS) location fingerprint based positioning systems attract great attentions from both the academia and industry. Usually, a time-consuming and labour-intensive site survey to collect dozens of training samples of RSS from access points (APs) in range on every reference position (RP) in the area of interest is required to build the radio map (RM), before the localisation services could be provided to users. The purpose of the thesis is to reduce the workload involved in the site survey while providing accurate localisation service from two aspects, as shown as follows. Firstly, the quantity of the training samples collected on each RP is reduced, by taking advantage of the on-line RSS measurements collected by users to calibrate the RM. The on-line RSS measurements are geo-tagged probabilistically by an implementation of particle filter to track the trajectories of the users. The employed particles in estimation of the users’ states are initialised by a supervised clustering algorithm, propagated according to the analysis of the data sourcing from inertial measurement units (IMUs), e.g., walking detection, orientation estimation, step and stepping moments detection, step length detection, etc., and corrected by the wall constraints. Furthermore, the importance weights of the particles are adjusted to reduce the negative influence of the multi-clustered distribution of the particles to the on-line localisation accuracy, by applying the on-line RSS-based localisation results when significant users' body turnings are detected. The final results confirm that the accuracy of the localisation service with the RM calibrated by the method proposed in this thesis is higher than the previously proposed approach taking advantage of expectation maximisation algorithm. Secondly, a semi-automatic site-survey method which takes advantage of a route-planning algorithm and a walking detection module to recognise automatically the index of the RP for the current site-survey task, inform the system automatically of the start/end of the process of the task on the current RP and switch automatically to the following RPs on the planned route for the following tasks. In this way, human beings' intervention to the site-survey process is greatly reduced. As a result, the errors made in the site-survey tasks, such as incorrect recognition of the index of the RP for the current task which is highly likely to occur when the technicians get absent-minded in the work, misoperations to start/end of the task for collecting RSS samples on the current RP at wrong time moments, forgetting to notify the system of the fact that the technician has moved on to the next RP, etc., are avoided. The technicians no longer feel bored or anxious in the process of fulfilment of site-survey tasks, and the working efficiency and robustness of the RM could be also improved

    Human Motion Modelling for Simulation Testing of GNSS Equipment

    Get PDF
    Pedestrian motion-induced dynamics along the line-of-sight (LOS) between a GNSS receiver and a satellite, may disrupt the nominal operation of GNSS carrier-tracking loops, by introducing cycle slips and/or false frequency locks. In combination with other factors, e.g. multipath interference, weak signal conditions or limited availability of GNSS signals, the receiver could provide a degraded navigation solution or even lose signal lock. This thesis researches firstly how pedestrian motion affects the operation of carrier phase lock loops (PLLs), used by some GNSS receivers, and frequency lock loops (FLLs), used by all GNSS receivers; and secondly, what is the best way to model pedestrian motion in order to simulate the error effects of pedestrian motion-induced dynamics on a GNSS antenna, via a simulated GNSS carrier phase lock loop (PLL). The thesis reviews the relevant literature on human biomechanical modelling, path-finding and inertial/GNSS navigation, to design a custom pedestrian motion model (PMM). The PMM validation is supported by motion capture (MoCap) experiments using an inertial/GNSS sensor held by, or attached, on a pedestrian. The thesis also describes an implementation of simulated GNSS carrier-tracking loops (SGCTLs) in Matlab, to assess the effect of human MoCap profiles and synthetic human motion profiles (from the PMM) on the performance of the SGCTLs. The testing results suggest that GNSS antenna motion dynamics due to typical pedestrian motion can induce excessive cycle slips due to dynamics stress on the simulated PLL and FLL. Therefore, antenna dynamics should be considered when designing GNSS tracking loops and navigation algorithms for pedestrian applications to allow the GNSS receiver track human motion-induced dynamics effectively. The thesis concludes with carrier-tracking bandwidth recommendations for GNSS receiver design, based on the presented evidence. Under good signal conditions (above 40dB-Hz), the minimum recommended bandwidths for PLLs and FLLs are 15Hz and 5Hz, respectively, in order to respond effectively to the dynamic stress induced by typical pedestrian movements. Finally, the results indicate that the PMM can represent the LOS dynamics stress on the SGPLL within an acceptable tolerance. Future work encompasses the analysis of the pedestrian motion effects on real GNSS receivers

    Novel Environmental Features for Robust Multisensor Navigation

    Get PDF
    Many navigation techniques have now become so reliant on GNSS that there is no back up when there is limited or no signal reception. If there is interference, intentional or otherwise, with the signal, navigation could be lost or become misleading [1]. Other navigation techniques harness different technologies such as Wi-Fi [2], eLoran and inertial navigation. However, each of these techniques has its own limitations, such as coverage, degradation in urban areas or solution drift [3]. Therefore there is a need for new navigation and positioning techniques that may be integrated with GNSS to increase the reliability of the system as a whole. This paper presents the results of a feasibility study to identify a set of novel environmental features that could be used for navigation in the temporary absence of GNSS or degradation of the signal. By measuring these features during times of GNSS availability a map can be produced. This can be referred to during times of limited reception, a principle already used for some Wi-Fi positioning techniques [2]. Therefore a “measurable” can be defined as a feature either man-made or natural that is spatially distinct and has limited temporal variation. Possibilities considered include magnetic anomalies [4], light intensity and road signs. Firstly, a brainstorming exercise and a literature study were conducted to generate a list of possible environmental features that was assessed for the viability of each candidate. The features were ranked according to three criteria: practicality, precision and coverage. The definition of practicality for each measurable was that a suitable detector must be installable on a road vehicle, particularly an emergency vehicle, at a reasonable cost with minimal alterations to the vehicle. Precision was defined in terms of the spatial variation of the environmental feature and thus the accuracy with which position information might be derived from it. Coverage was assessed in terms of the availability of the feature over a range of different environments. Continuous coverage is not required because the new measurables may be used in combination and integrated with dead reckoning techniques, such as odometry and inertial navigation [3]. The outcome of the viability study was used to determine which features are to be experimentally tested. Magnetic anomalies, road texture and a dozen other environmental features were found to be worth investigation. Features which were discounted include wind speed and pulsars [5]. The initial experiment was carried out on foot in Central London. The same tests were repeated on two separate days, with a closed loop circuit walked three times on each occasion. This experiment used an Inertial Measurement Unit (IMU), comprising accelerometer and gyro triads, together with a barometer, three-axis magnetometer and GNSS receiver. The experiment was also recorded using a camcorder from the point of view of a pedestrian, enabling visual and audio features of the environment to be assessed. Magnetic anomalies were found to be a promising source of position information. Peaks in the magnetometer data were observed on all rounds at approximately the same positions. There were also similarities seen in the temperature profiles after correcting for the temporal variation of the background temperature. Another potential source of position information was found to be text-based signs. It is relatively simple to extract text from camera images and it is easily stored in a feature database. However, methods of dealing with identically-worded signs in close proximity will need to be developed. Sound levels were analysed in 10s intervals for the mean, minimum and maximum sound volume. There was no clear correlation observed between the different rounds of the experiment. Due to the pedestrian experimental results sound levels of the surroundings will not be used in further experimentation. An alternative area of enquiry for using sound (in the vehicular experiments) is using microphones to indirectly measure road texture based on the noise from the wheel contact with the road [6]. The paper will also present results of road vehicle experiments. Multiple circuits of the same routes will be compared. Different environments will be assessed including rural, dual carriageways, suburban and urban roads. Sensors to be used include the IMU and 3-axis magnetometer from the pedestrian experiment, a barometer, gas sensors, a microphone, an axle-mounted accelerometer, an ambient light sensor and a thermometer. These will be placed either on, inside or under the vehicle as determined by the individual needs of the sensors. The results will be used to determine which of these sensors could be potentially used for a multisensor integrated navigation system and also the environments in which they work optimally. Using the results of the three feasibility study phases (literature review, pedestrian and road experiment) the next project stage will be to produce a demonstration system that uses the most feasible features of the environment and creates a map database during times GNSS is present. This database will then be used for navigation in times of need. In the long term, it is envisaged that this technique will be implemented cooperatively, with a batch of vehicles collecting feature data and contributing it to a common shared database. / References [1] Thomas, M., et al., Global Navigation Space Systems: Reliance and Vulnerabilities, London, UK: Royal Academy of Engineering, 2011. [2] Jones, K., L. Liu, and F. Alizadeh-Shabdiz, “Improving Wireless Positioning with Look-ahead Map-Matching,” Proc. MobiQuitous 2007, Phildaelphia, PA, February 2008, pp. 1-8. [3] Groves, P.D., Principles of GNSS, Inertial, and Multisensor Intergrated Navigation Systems, Second Edition, Artech House, 2013. [4] Judd, T., and T. Vu, “Use of a New Pedometric Dead Reckoning Module in GPS Denied Environments,” Proc. IEEE/ION PLANS, Monterey, CA, May 2008, pp. 120?128. [5] Walter, D. J., "Feasibility study of novel environmental feature mapping to bridge GNSS outage," Young Navigator Conference, London, 2012. [6] Mircea, M., et al., “Strategic mapping of the ambient noise produced by road traffic, accordingly to European regulations,” Proc. IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj Napoca, Romania, May 2008
    • …
    corecore