7,965 research outputs found

    Beam lead technology

    Get PDF
    Beam lead technology for microcircuit interconnections with applications to metallization, passivation, and bondin

    Electrically packaged silicon-organic hybrid (SOH) I/Q-modulator for 64 GBd operation

    Get PDF
    Silicon-organic hybrid (SOH) electro-optic (EO) modulators combine small footprint with low operating voltage and hence low power dissipation, thus lending themselves to on-chip integration of large-scale device arrays. Here we demonstrate an electrical packaging concept that enables high-density radio-frequency (RF) interfaces between on-chip SOH devices and external circuits. The concept combines high-resolution Al2O3\mathrm{Al_2O_3} printed-circuit boards with technically simple metal wire bonds and is amenable to packaging of device arrays with small on-chip bond pad pitches. In a set of experiments, we characterize the performance of the underlying RF building blocks and we demonstrate the viability of the overall concept by generation of high-speed optical communication signals. Achieving line rates (symbols rates) of 128 Gbit/s (64 GBd) using quadrature-phase-shiftkeying (QPSK) modulation and of 160 Gbit/s (40 GBd) using 16-state quadrature-amplitudemodulation (16QAM), we believe that our demonstration represents an important step in bringing SOH modulators from proof-of-concept experiments to deployment in commercial environments

    Sixty GHz IMPATT diode development

    Get PDF
    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation

    High performance 3-folded symmetric decoupled MEMS gyroscopes

    Get PDF
    This thesis reports, for the first time, on a novel design and architecture for realizing inertial grade gyroscope based on Micro-Electro-Mechanical Systems (MEMS) technology. The proposed device is suitable for high-precision Inertial Navigation Systems (INS). The new design has been investigated analytically and numerically by means of Finite Element Modeling (FEM) of the shapes, resonance frequencies and decoupling of the natural drive and sense modes of the various implementations. Also, famous phenomena known as spring softening and spring hardening are studied. Their effect on the gyroscope operation is modeled numerically in Matlab/Simulink platform. This latter model is used to predict the drive/sense mode matching capability of the proposed designs. Based on the comparison with the best recently reported performance towards inertial grade operation, it is expected that the novel architecture further lowers the dominant Brownian (thermo-mechanical) noise level by more than an order of magnitude (down to 0.08º/hr). Moreover, the gyroscope\u27s figure of merit, such as output sensitivity (150 mV/º/s), is expected to be improved by more than two orders of magnitude. This necessarily results in a signal to noise ratio (SNR) which is up to three orders of magnitude higher (up to 1,900mV/ º/hr). Furthermore, the novel concept introduced in this work for building MEMS gyroscopes allows reducing the sense parasitic capacitance by up to an order of magnitude. This in turn reduces the drive mode coupling or quadrature errors in the sensor\u27s output signal. The new approach employs Silicon-on-Insulator (SOI) substrates that allows the realization of large mass (\u3e1.6mg), large sense capacitance (\u3e2.2pF), high quality factors (\u3e21,000), large drive amplitude (~2-4 µm) and low resonance frequency (~3-4 KHz) as well as the consequently suppressed noise floor and reduced support losses for high-performance vacuum operation. Several challenges were encountered during fabrication that required developing high aspect ratio (up to 1:20) etching process for deep trenches (up to 500 µm). Frequency Response measurement platform was built for devices characterization. The measurements were performed at atmospheric pressures causing huge drop of the devices performance. Therefore, various MEMS gyroscope packaging technologies are studied. Wafer Level Packaging (WLP) is selected to encapsulate the fabricated devices under vacuum by utilizing wafer bonding. Through Silicon Via (TSV) technology was developed (as connections) to transfer the electrical signals (of the fabricated devices) outside the cap wafers

    On the design of an Ohmic RF MEMS switch for reconfigurable microstrip antenna applications

    Get PDF
    This paper presents the analysis, design and simulation of a direct contact (dc) RF MEMS switch specified for reconfigurable microstrip array antennas. The proposed switch is indented to be built on PCB via a monolithic technology together with the antenna patches. The proposed switch will be used to allow antenna beamforming in the operating frequency range between 2GHz and 4GHz. This application requires a great number of these switches to be integrated with an array of microstrip patch elements. The proposed switch fulfills the switching characteristics as concerns the five requirements (loss, linearity, voltage/power handling, small size/power consumption, temperature), following a relatively simple design, which ensures reliability, robustness and high fabrication yiel

    The 60 GHz IMPATT diode development

    Get PDF
    The objective is to develop 60 GHz IMPATT diodes suitable for communications applications. The performance goals of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10-year lifetime. The final design of the 60 GHz IMPATT structure evolved from computer simulations performed at the University of Michigan. The initial doping profile, involving a hybrid double-drift (HDD) design, was derived from a drift-diffusion model that used the static velocity-field characteristics for GaAs. Unfortunately, the model did not consider the effects of velocity undershoot and delay of the avalanche process due to energy relaxation. Consequently, the initial devices were oscillating at a much lower frequency than anticipated. With a revised simulation program that included the two effects given above, a second HDD profile was generated and was used as a basis for fabrication efforts. In the area of device fabrication, significant progress was made in epitaxial growth and characterization, wafer processing, and die assembly. The organo-metallic chemical vapor deposition (OMCVD) was used. Starting with a baseline X-Band IMPATT technology, appropriate processing steps were modified to satisfy the device requirements at V-Band. In terms of efficiency and reliability, the device requirements dictate a reduction in its series resistance and thermal resistance values. Qualitatively, researchers were able to reduce the diodes' series resistance by reducing the thickness of the N+ GaAs substrate used in its fabrication

    Wafer-Level Parylene Packaging With Integrated RF Electronics for Wireless Retinal Prostheses

    Get PDF
    This paper presents an embedded chip integration technology that incorporates silicon housings and flexible Parylene-based microelectromechanical systems (MEMS) devices. Accelerated-lifetime soak testing is performed in saline at elevated temperatures to study the packaging performance of Parylene C thin films. Experimental results show that the silicon chip under test is well protected by Parylene, and the lifetime of Parylenecoated metal at body temperature (37°C) is more than 60 years, indicating that Parylene C is an excellent structural and packaging material for biomedical applications. To demonstrate the proposed packaging technology, a flexible MEMS radio-frequency (RF) coil has been integrated with an RF identification (RFID) circuit die. The coil has an inductance of 16 μH with two layers of metal completely encapsulated in Parylene C, which is microfabricated using a Parylene–metal–Parylene thin-film technology. The chip is a commercially available read-only RFID chip with a typical operating frequency of 125 kHz. The functionality of the embedded chip has been tested using an RFID reader module in both air and saline, demonstrating successful power and data transmission through the MEMS coil

    IC Ku-band Impatt Amplifier

    Get PDF
    High efficiency GaAs low-high-low IMPATTs were investigated. Theoretical analyses were employed to establish a design window for the material parameters to maximize microwave performance. Single mesa devices yielded typically 2 to 3 W with 16 to 23% efficiency in waveguide oscillator test circuits. IMPATTs with high reliability Pt/TiW/Pt/Au metallizations were subjected to temperature stress, non-rf bias-temperature stress, and rf bias-temperature stress. Assuming that temperature is the driving force behind the dominant failure mechanism, a mean-time-to-failure considerably greater than 500,000 hours is indicated by the stress tests. A 15 GHz, 4W, 56 dB gain microstrip amplifier was realized using GaAs FETs and IMPATTs. Power combining using a 3 db Lange coupler is employed in the power output stage having an intrinsic power-added efficiency of 15.7%. Overall dc-to-rf efficiency of the amplifier is 10.8%. The amplifier has greater than a 250 MHz, 1 db bandwidth; operates over the 0 deg to 50 C (base plate) temperature range with less than 0.5 db change in the power output; weighs 444 grams; and has a volume of 220 cu cm

    Ku-band field-effect power transistors

    Get PDF
    A single stage amplifier was developed using an 8 gate, 1200 micrometer width device to give a gain of 3.3 + or - 0.1 dB over the 14.4 to 15.4 GHz band with an output power of 0.48 W and 15% minimum efficiency with 0.255 W of input power. With two 8 gate devices combined and matched on the device carrier, using a lumped element format, a gain of 3 dB was attained over the 14.5 to 15.5 GHz band with a maximum efficiency of 9.9% for an output power of 0.8 W

    The Conference on High Temperature Electronics

    Get PDF
    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment
    corecore