878 research outputs found

    Mathematical modeling of ultra wideband in vivo radio channel

    Get PDF
    This paper proposes a novel mathematical model for an in vivo radio channel at ultra-wideband frequencies (3.1–10.6 GHz), which can be used as a reference model for in vivo channel response without performing intensive experiments or simulations. The statistics of error prediction between experimental and proposed model is RMSE = 5.29, which show the high accuracy of the proposed model. Also, the proposed model was applied to the blind data, and the statistics of error prediction is RMSE = 7.76, which also shows a reasonable accuracy of the model. This model will save the time and cost on simulations and experiments, and will help in designing an accurate link budget calculation for a future enhanced system for ultra-wideband body-centric wireless systems

    Improved reception of in-body signals by means of a wearable multi-antenna system

    Get PDF
    High data-rate wireless communication for in-body human implants is mainly performed in the 402-405 MHz Medical Implant Communication System band and the 2.45 GHz Industrial, Scientific and Medical band. The latter band offers larger bandwidth, enabling high-resolution live video transmission. Although in-body signal attenuation is larger, at least 29 dB more power may be transmitted in this band and the antenna efficiency for compact antennas at 2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can exploit the large surface provided by a garment by deploying multiple compact highly efficient wearable antennas, capturing the signals transmitted by the implant directly at the body surface, yielding stronger signals and reducing interference. In this paper, we implement a reliable 3.5 Mbps wearable textile multi-antenna system suitable for integration into a jacket worn by a patient, and evaluate its potential to improve the In-to-Out Body wireless link reliability by means of spatial receive diversity in a standardized measurement setup. We derive the optimal distribution and the minimum number of on-body antennas required to ensure signal levels that are large enough for real-time wireless endoscopy-capsule applications, at varying positions and orientations of the implant in the human body

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Novel small-size directional antenna for UWB WBAN/WPAN applications

    Get PDF

    High-performance wireless interface for implant-to-air communications

    Get PDF
    Nous Ă©laborons une interface cerveau-machine (ICM) entiĂšrement sans fil afin de fournir un systĂšme de liaison directe entre le cerveau et les pĂ©riphĂ©riques externes, permettant l’enregistrement et la stimulation du cerveau pour une utilisation permanente. Au cours de cette thĂšse, nous explorons la modĂ©lisation de canal, les antennes implantĂ©es et portables en tant que propagateurs appropriĂ©s pour cette application, la conception du nouveau systĂšme d’un Ă©metteur-rĂ©cepteur UWB implantable, la conception niveau systĂšme du circuit et sa mise en oeuvre par un procĂ©dĂ© CMOS TSMC 0.18 um. En plus, en collaboration avec UniversitĂ© McGill, nous avons conçu un rĂ©seau de seize antennes pour une dĂ©tection du cancer du sein Ă  l’aide d’hyperfrĂ©quences. Notre premiĂšre contribution calcule la caractĂ©risation de canal de liaison sans fil UWB d’implant Ă  l’air, l’absorption spĂ©cifique moyennĂ©e (ASAR), et les lignes directrices de la FCC sur la densitĂ© spectrale de puissance UWB transmis. La connaissance du comportement du canal est nĂ©cessaire pour dĂ©terminer la puissance maximale permise Ă  1) respecter les lignes directrices ANSI pour Ă©viter des dommages aux tissus et 2) respecter les lignes directrices de la FCC sur les transmissions non autorisĂ©es. Nous avons recours Ă  un modĂšle rĂ©aliste du canal biologique afin de concevoir les antennes pour l’émetteur implantĂ© et le rĂ©cepteur externe. Le placement des antennes est examinĂ© avec deux scĂ©narios contrastĂ©s ayant des contraintĂ©s de puissance. La performance du systĂšme au sein des tissus biologiques est examinĂ©e par l’intermĂ©diaire des simulations et des expĂ©riences. Notre deuxiĂšme contribution est dĂ©diĂ©e Ă  la conception des antennes simples et Ă  double polarisation pour les systĂšmes d’enregistrement neural sans fil Ă  bande ultra-large en utilisant un modĂšle multicouches inhomogĂšne de la tĂȘte humaine. Les antennes fabriquĂ©es Ă  partir de matĂ©riaux flexibles sont plus facilement adaptĂ©es Ă  l’implantation ; nous Ă©tudions des matĂ©riaux Ă  la fois flexibles et rigides et examinons des compromis de performance. Les antennes proposĂ©es sont conçues pour fonctionner dans une plage de frĂ©quence de 2-11 GHz (ayant S11-dessous de -10 dB) couvrant Ă  la fois la bande 2.45 GHz (ISM) et la bande UWB 3.1-10.6 GHz. Des mesures confirment les rĂ©sultats de simulation et montrent que les antennes flexibles ont peu de dĂ©gradation des performances en raison des effets de flexion (en termes de correspondance d’impĂ©dance). Finalement, une comparaison est rĂ©alisĂ©e entre quatre antennes implantables, couvrant la gamme 2-11 GHz : 1) une rigide, Ă  la polarisation simple, 2) une rigide, Ă  double polarisation, 3) une flexible, Ă  simple polarisation et 4) une flexible, Ă  double polarisation. Dans tous les cas une antenne rigide est utilisĂ©e Ă  l’extĂ©rieur du corps, avec une polarisation appropriĂ©e. Plusieurs avantages ont Ă©tĂ© confirmĂ©s pour les antennes Ă  la polarisation double : 1) une taille plus petite, 2) la sensibilitĂ© plus faible aux dĂ©salignements angulaires, et 3) une plus grande fidĂ©litĂ©. Notre troisiĂšme contribution fournit la conception niveau systĂšme de l’architecture de communication sans fil pour les systĂšmes implantĂ©s qui stimulent simultanĂ©ment les neurones et enregistrent les rĂ©ponses de neurones. Cette architecture prend en charge un grand nombre d’électrodes (> 500), fournissant 100 Mb/s pour des signaux de stimulation de liaison descendante, et Gb/s pour les enregistrements de neurones de liaison montante. Nous proposons une architecture d’émetteur-rĂ©cepteur qui partage une antenne ultra large bande, un Ă©metteur-rĂ©cepteur simplifiĂ©, travaillant en duplex intĂ©gral sur les deux bandes, et un nouveau formeur d’impulsions pour la liaison montante du Gb/s soutenant plusieurs formats de modulation. Nous prĂ©sentons une dĂ©monstration expĂ©rimentale d’ex vivo de l’architecture en utilisant des composants discrets pour la rĂ©alisation les taux Gb/s en liaison montante. Une bonne performance de taux d’erreur de bit sur un canal biologique Ă  0,5, 1 et 2 Gb/s des dĂ©bits de donnĂ©es pour la tĂ©lĂ©mĂ©trie de liaison montante (UWB) et 100 Mb/s pour la tĂ©lĂ©mĂ©trie en liaison descendante (bande 2.45 GHz) est atteinte. Notre quatriĂšme contribution prĂ©sente la conception au niveau du circuit d’un dispositif d’émission en duplex total qui est prĂ©sentĂ©e dans notre troisiĂšme contribution. Ce dispositif d’émission en duplex total soutient les applications d’interfaçage neural multimodal et en haute densitĂ© (les canaux de stimulant et d’enregistrement) avec des dĂ©bits de donnĂ©es asymĂ©triques. L’émetteur (TX) et le rĂ©cepteur (RX) partagent une seule antenne pour rĂ©duire la taille de l’implant. Le TX utilise impulse radio ultra-wide band (IR-UWB) basĂ© sur une approche alliant des bords, et le RX utilise un nouveau 2.4 GHz rĂ©cepteur on-off keying (OOK).Une bonne isolation (> 20 dB) entre le trajet TX et RX est mis en oeuvre 1) par mise en forme des impulsions transmises pour tomber dans le spectre UWB non rĂ©glementĂ© (3.1-7 GHz), et 2) par un filtrage espace-efficace du spectre de liaison descendante OOK dans un amplificateur Ă  faible bruit RX. L’émetteur UWB 3.1-7 GHz peut utiliser soit OOK soit la modulation numĂ©rique binaire Ă  dĂ©placement de phase (BPSK). Le FDT proposĂ© offre une double bande avec un taux de donnĂ©es de liaison montante de 500 Mbps TX et un taux de donnĂ©es de liaison descendante de 100 Mb/s RX, et il est entiĂšrement en conformitĂ© avec les standards TSMC 0.18 um CMOS dans un volume total de 0,8 mm2. Ainsi, la mesure de consommation d’énergie totale en mode full duplex est de 10,4 mW (5 mW Ă  100 Mb/s pour RX, et de 5,4 mW Ă  500 Mb/s ou 10,8 PJ / bits pour TX). Notre cinquiĂšme contribution est une collaboration avec l’UniversitĂ© McGill dans laquelle nous concevons des antennes simples et Ă  double polarisation pour les systĂšmes de dĂ©tection du cancer du sein Ă  l’aide d’hyperfrĂ©quences sans fil en utilisant un modĂšle multi-couche et inhomogĂšne du sein humain. Les antennes fabriquĂ©es Ă  partir de matĂ©riaux flexibles sont plus facilement adaptĂ©es Ă  des applications portables. Les antennes flexibles miniaturisĂ©es monopĂŽles et spirales sur un 50 um Kapton polyimide sont conçus, en utilisant high frequency structure simulator (HFSS), Ă  ĂȘtre en contact avec des tissus biologiques du sein. Les antennes proposĂ©es sont conçues pour fonctionner dans une gamme de frĂ©quences de 2 Ă  4 GHz. Les mesures montrent que les antennes flexibles ont une bonne adaptation d’impĂ©dance dans les diffĂ©rentes positions sur le sein. De Plus, deux antennes Ă  bande ultralarge flexibles 4 × 4 (simple et Ă  double polarisation), dans un format similaire Ă  celui d’un soutien-gorge, ont Ă©tĂ© dĂ©veloppĂ©s pour un systĂšme de dĂ©tection du cancer du sein basĂ© sur le radar.We are working on a fully wireless brain-machine-interface to provide a communication link between the brain and external devices, enabling recording and stimulating the brain for permanent usage. In this thesis we explore channel modeling, implanted and wearable antennas as suitable propagators for this application, system level design of an implantable UWB transceiver, and circuit level design and implementing it by TSMC 0.18 um CMOS process. Also, in a collaboration project with McGill University, we designed a flexible sixteen antenna array for microwave breast cancer detection. Our first contribution calculates channel characteristics of implant-to-air UWB wireless link, average specific absorption rate (ASAR), and FCC guidelines on transmitted UWB power spectral density. Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulations and experiments. Our second contribution deals with designing single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2–11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1–10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity. Our third contribution provides system level design of wireless communication architecture for implanted systems that simultaneously stimulate neurons and record neural responses. This architecture supports large numbers of electrodes (> 500), providing 100 Mb/s for the downlink of stimulation signals, and Gb/s for the uplink neural recordings. We propose a transceiver architecture that shares one ultra-wideband antenna, a streamlined transceiver working at full-duplex on both bands, and a novel pulse shaper for the Gb/s uplink supporting several modulation formats. We present an ex-vivo experimental demonstration of the architecture using discrete components achieving Gb/s uplink rates. Good bit error rate performance over a biological channel at 0.5, 1, and 2 Gbps data rates for uplink telemetry (UWB) and 100 Mbps for downlink telemetry (2.45 GHz band) is achieved. Our fourth contribution presents circuit level design of the novel full-duplex transceiver (FDT) which is presented in our third contribution. This full-duplex transceiver supports high-density and multimodal neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates. The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by spaceefficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18 um CMOS within a total size of 0.8 mm2. The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Our fifth contribution is a collaboration project with McGill University which we design single and dual-polarization antennas for wireless ultra-wideband breast cancer detection systems using an inhomogeneous multi-layer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50 um Kapton polyimide are designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2–4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching while in different positions with different curvature around the breast. Furthermore, two flexible conformal 4×4 ultra-wideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system

    Comprehensive design and propagation study of a compact dual band antenna for healthcare applications

    Get PDF
    In this paper, a dual band planar inverted F antenna (PIFA) has been investigated for cooperative on- and off-body communications. Free space and on-body performance parameters like return loss, bandwidth, radiation pattern and efficiency of this antenna are shown and investigated. The on- and off-body radio propagation channel performance at 2.45 GHz and 1.9 GHz have been investigated, respectively. Experimental investigations are performed both in the anechoic chamber and in an indoor environment. The path loss exponent has been extracted for both on- and off-body radio propagation scenarios. For on-body propagation, the path loss exponent is 2.48 and 2.22 in the anechoic chamber and indoor environment, respectively. The path loss exponent is 1.27 for off-body radio propagation situation. For on-body case, the path loss has been characterized for ten different locations on the body at 2.45 GHz, whereas for off-body case radio channel studies are performed for five different locations at 1.9 GHz. The proposed antenna shows a good on- and off-body radio channel performance

    UWB Characteristics of RF Propagation for Body Mounted and Implanted Sensors

    Get PDF
    Body Area Network (BAN) technology is related to many applications inside, on and around the human body. The basic configuration of a BAN is a set of sensors, which are wearable or are placed inside the human body, transmitting signals to a terminal situated in a doctorñ€ℱs office, in order to assess or monitor some aspect of a patientñ€ℱs physical condition. Additionally, in many BAN applications the information about the sensor location is very important, since without knowing a sensorñ€ℱs location, the transmitted data may be of limited value. As an example, Wireless Video Capsule Endoscopy (VCE) can benefit greatly from the addition of location information. The capsule transmits an RF signal from inside the human body to another sensor on the body surface or external. From the image data provided by the capsule, taken together with the location information, the doctor can locate the infection or lesion and initiate appropriate medical care. In this way, the treatment can be more effective and accurate. In this thesis we investigate the characteristics of Ultra-Wide Band (UWB) RF propagation for BAN devices placed around and inside the human body. We have made measurements around the human body and around a water-filled phantom using an E8363B Vector Network Analyzer (VNA), specifically measuring the S21 signal, which gives the transfer function. Based on these measurement results, we discuss the channel propagation for cases where the transmitter and the receiver are on the surface of the body and analyze the UWB propagation characteristics for RF localization. Because it is impractical or even impossible to make measurements inside the human body, we chose to apply the measurements using a simulation model of homogenous tissue, which serves as an approximation of the signal propagation environment inside the body. First, by comparing the multipath situation in free space and within a model of homogenous tissue, we are able to analyze the multipath effects inside human body. Then, because of the different characteristics of RF propagation in different bandwidths, we have made measurements at UWB (3GHz to 10GHz), and narrowband (402MHz) frequencies

    Empirical RF Propagation Modeling of Human Body Motions for Activity Classification

    Get PDF
    Many current and future medical devices are wearable, using the human body as a conduit for wireless communication, which implies that human body serves as a crucial part of the transmission medium in body area networks (BANs). Implantable medical devices such as Pacemaker and Cardiac Defibrillators are designed to provide patients with timely monitoring and treatment. Endoscopy capsules, pH Monitors and blood pressure sensors are used as clinical diagnostic tools to detect physiological abnormalities and replace traditional wired medical devices. Body-mounted sensors need to be investigated for use in providing a ubiquitous monitoring environment. In order to better design these medical devices, it is important to understand the propagation characteristics of channels for in-body and on- body wireless communication in BANs. The IEEE 802.15.6 Task Group 6 is officially working on the standardization of Body Area Network, including the channel modeling and communication protocol design. This thesis is focused on the propagation characteristics of human body movements. Specifically, standing, walking and jogging motions are measured, evaluated and analyzed using an empirical approach. Using a network analyzer, probabilistic models are derived for the communication links in the medical implant communication service band (MICS), the industrial scientific medical band (ISM) and the ultra- wideband (UWB) band. Statistical distributions of the received signal strength and second order statistics are presented to evaluate the link quality and outage performance for on-body to on- body communications at different antenna separations. The Normal distribution, Gamma distribution, Rayleigh distribution, Weibull distribution, Nakagami-m distribution, and Lognormal distribution are considered as potential models to describe the observed variation of received signal strength. Doppler spread in the frequency domain and coherence time in the time domain from temporal variations is analyzed to characterize the stability of the channels induced by human body movements. The shape of the Doppler spread spectrum is also investigated to describe the relationship of the power and frequency in the frequency domain. All these channel characteristics could be used in the design of communication protocols in BANs, as well as providing features to classify different human body activities. Realistic data extracted from built-in sensors in smart devices were used to assist in modeling and classification of human body movements along with the RF sensors. Variance, energy and frequency domain entropy of the data collected from accelerometer and orientation sensors are pre- processed as features to be used in machine learning algorithms. Activity classifiers with Backpropagation Network, Probabilistic Neural Network, k-Nearest Neighbor algorithm and Support Vector Machine are discussed and evaluated as means to discriminate human body motions. The detection accuracy can be improved with both RF and inertial sensors
    • 

    corecore